Multivariate Discrete First Order Stochastic Dominance

This paper characterizes the principle of first order stochastic dominance in a multivariate discrete setting. We show that a distribution f first order stochastic dominates distribution g if and only if f can be obtained from g by iteratively shifting density from one outcome to another that is better. For the bivariate case, we develop the theoretical basis for an algorithmic dominance test that is easy to implement.

[1]  Patrick Moyes,et al.  Ethically Robust Comparisons of Distributions of Two Individual Attributes , 2007 .

[2]  James E Foster,et al.  Measuring health inequality using qualitative data. , 2004, Journal of health economics.

[3]  Ilan Vertinsky,et al.  Stochastic Dominance Rules for Multi-attribute Utility Functions , 1978 .

[4]  Gleb A. Koshevoy,et al.  Multivariate Lorenz majorization , 1995 .

[5]  Haim Levy,et al.  Toward multivariate efficiency criteria , 1974 .

[6]  Vijay S. Bawa,et al.  Research Bibliography-Stochastic Dominance: A Research Bibliography , 1982 .

[7]  Kai-yuen Tsui,et al.  Multidimensional poverty indices , 2002, Soc. Choice Welf..

[8]  J. Duclos,et al.  Robust Multidimensional Poverty Comparisons , 2006 .

[9]  Bezalel Peleg,et al.  Efficiency Analysis for Multivariate Distributions , 1975 .

[10]  F. Bourguignon,et al.  Family size and social utility: income distribution dominance criteria. , 1989, Journal of econometrics.

[11]  John A. Weymark,et al.  The Normative Approach to the Measurement of Multidimensional Inequality , 2004 .

[12]  J. Quirk,et al.  Admissibility and Measurable Utility Functions , 1962 .

[13]  Alain Trannoy,et al.  Multidimensional egalitarianism and the dominance approach A lost paradise ? , 2005 .

[14]  Gleb A. Koshevoy,et al.  The Lorenz zonotope and multivariate majorizations , 1997 .

[15]  Tae Kun Seo,et al.  Ordering Uncertain Prospects: The Multivariate Utility Functions Case , 1978 .

[16]  F. Bourguignon On the Measurement of Inequality , 2003 .

[17]  E. Lehmann Ordered Families of Distributions , 1955 .

[18]  F. Bourguignon,et al.  The Measurement of Multidimensional Poverty , 2003 .

[19]  Karl Mosler,et al.  Stochastic Dominance Decision Rules when the Attributes are Utility Independent , 1984 .

[20]  A. Atkinson,et al.  The Comparison of Multi-Dimensioned Distributions of Economic Status , 1982 .

[21]  T. Kamae,et al.  Stochastic Inequalities on Partially Ordered Spaces , 1977 .

[22]  Marco Scarsini,et al.  Dominance Conditions for Multivariate Utility Functions , 1988 .