Three-qutrit entanglement and simple singularities

In this paper, we use singularity theory to study the entanglement nature of pure three-qutrit systems. We first consider the algebraic variety $X$ of separable three-qutrit states within the projective Hilbert space $\mathbb{P}(\mathcal{H}) = \mathbb{P}^{26}$. Given a quantum pure state $|\varphi\rangle\in \mathbb{P}(\mathcal{H})$ we define the $X_\varphi$-hypersuface by cutting $X$ with a hyperplane $H_\varphi$ defined by the linear form $\langle\varphi|$ (the $X_\varphi$-hypersurface of $X$ is $X\cap H_\varphi \subset X$). We prove that when $|\varphi\rangle$ ranges over the SLOCC entanglement classes, the "worst" possible singular $X_\varphi$-hypersuface with isolated singularities, has a unique singular point of type $D_4$.

[1]  A. Miyake Classification of multipartite entangled states by multidimensional determinants , 2002, quant-ph/0206111.

[2]  Friedrich Knop Ein neuer Zusammenhang zwischen einfachen Gruppen und einfachen Singularitäten , 1987 .

[3]  A G Nurmiev,et al.  Orbits and invariants of cubic matrices of order three , 2000 .

[4]  V. I. Arnol'd,et al.  Normal forms for functions near degenerate critical points, the Weyl groups of Ak, Dk, Ek and Lagrangian singularities , 1972 .

[5]  F. Holweck,et al.  Entanglement of four qubit systems: A geometric atlas with polynomial compass I (the finite world) , 2013, 1306.6816.

[6]  Jean-Gabriel Luque,et al.  Singularity of type D4 arising from four-qubit systems , 2013, 1312.0639.

[7]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[8]  Анвар Гаязович Нурмиев,et al.  Орбиты и инварианты кубических матриц третьего порядка@@@Orbits and invariants of cubic matrices of order three , 2000 .

[9]  A. Parusinski,et al.  Multiplicity of the Dual Variety , 1991 .

[10]  Jerzy Weyman,et al.  Singularities of hyperdeterminants , 1996 .

[11]  F. Verstraete,et al.  The moduli space of three-qutrit states , 2003, quant-ph/0306122.

[12]  Luke Oeding,et al.  The 3 × 3 × 3 Hyperdeterminant as a Polynomial in the Fundamental Invariants for SL3(C)×SL3(C)×SL3(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidema , 2013, Mathematics in Computer Science.

[13]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[14]  Michal Oszmaniec,et al.  Convexity of momentum map, Morse index, and quantum entanglement , 2014 .

[15]  Vladimir I. Arnold,et al.  Singularity Theory I , 1998 .

[16]  Matthias Christandl,et al.  Entanglement Polytopes: Multiparticle Entanglement from Single-Particle Information , 2012, Science.

[17]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.