Optimal Rectangular Partitions

[1]  Jimmy J. M. Tan,et al.  Minimum partitioning simple rectilinear polygons in O(n log log n) - time , 1989, SCG '89.

[2]  Jimmy J. M. Tan,et al.  Minimum rectangular partition problem for simple rectilinear polygons , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Valeriu Soltan,et al.  Minimum dissection of a rectilinear polygon with arbitrary holes into rectangles , 1993, Discret. Comput. Geom..

[4]  Takao Asano,et al.  Efficient Algorithms for Geometric Graph Search Problems , 1986, SIAM J. Comput..

[5]  Anne Kaldewaij,et al.  Rectangular Partition is Polynomial in Two Dimensions but NP-Complete in Three , 1991, Inf. Process. Lett..

[6]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..

[7]  Christos Levcopoulos Fast heuristics for minimum length rectangular partitions of polygons , 1986, SCG '86.

[8]  Bing Lu,et al.  Polynomial Time Approximation Scheme for the Rectilinear Steiner Arborescence Problem , 2000, J. Comb. Optim..

[9]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[10]  Witold Lipski,et al.  An O(n log n) Manhattan Path Algorithm , 1984, Inf. Process. Lett..

[11]  Joseph S. B. Mitchell,et al.  Guillotine subdivisions approximate polygonal subdivisions: a simple new method for the geometric k-MST problem , 1996, SODA '96.

[12]  Man-Tak Shing,et al.  On optimal routing trees , 1988 .

[13]  Santosh S. Vempala,et al.  A Constant-Factor Approximation Algorithm for the Geometric k-MST Problem in the Plane , 1999, SIAM J. Comput..

[14]  Witold Lipski,et al.  Finding a manhattan path and related problems , 1983, Networks.

[15]  Jack Sklansky,et al.  Minimal rectangular partitions of digitized blobs , 1984, Comput. Vis. Graph. Image Process..

[16]  Ding-Zhu Du,et al.  On heuristics for minimum length rectilinear partitions , 2005, Algorithmica.

[17]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[18]  Sanjeev Arora,et al.  Nearly Linear Time Approximation Schemes for Euclidean TSP and Other Geometric Problems , 1997, RANDOM.

[19]  Steven Skiena,et al.  On the Maximum Scatter Traveling Salesperson Problem , 1999, SIAM J. Comput..

[20]  Andrzej Lingas Heuristics for minimum edge length rectangular partitions of rectilinear figures , 1983 .

[21]  Teofilo F. Gonzalez,et al.  Bounds for partitioning rectilinear polygons , 1985, SCG '85.

[22]  Teofilo F. Gonzalez,et al.  Inproved Bounds for Rectangular and Guillotine Partitions , 1989, J. Symb. Comput..

[23]  Andrzej Lingas,et al.  The Power of Non-Rectilinear Holes , 1982, ICALP.