Normalized ground states for the critical fractional NLS equation with a perturbation

In this paper, we study normalized ground states for the following critical fractional NLS equation with prescribed mass: $$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^{s}u=\lambda u +\mu |u|^{q-2}u+|u|^{2_{s}^{*}-2}u,&{}x\in \mathbb {R}^{N}, \\ \int _{\mathbb {R}^{N}}u^{2}dx=a^{2},\\ \end{array}\right. } \end{aligned}$$ ( - Δ ) s u = λ u + μ | u | q - 2 u + | u | 2 s ∗ - 2 u , x ∈ R N , ∫ R N u 2 d x = a 2 , where $$(-\Delta )^{s}$$ ( - Δ ) s is the fractional Laplacian, $$02s$$ N > 2 s , $$20$$ a > 0 , $$\mu \in \mathbb {R}$$ μ ∈ R . By using Jeanjean’s trick in Jeanjean (Nonlinear Anal 28:1633–1659, 1997), and the standard method which can be found in Brézis and Nirenberg (Commun Pure Appl Math 36:437–477, 1983) to overcome the lack of compactness, we first prove several existence and nonexistence results for a $$L^{2}$$ L 2 -subcritical (or $$L^{2}$$ L 2 -critical or $$L^{2}$$ L 2 -supercritical) perturbation $$\mu |u|^{q-2}u$$ μ | u | q - 2 u , then we give some results about the behavior of the ground state obtained above as $$\mu \rightarrow 0^{+}$$ μ → 0 + . Our results extend and improve the existing ones in several directions.

[1]  Vicentiu D. Rădulescu,et al.  Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent , 2019, Advances in Nonlinear Analysis.

[2]  K Fan,et al.  Minimax Theorems. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[3]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[4]  Enrico Valdinoci,et al.  The Brezis-Nirenberg result for the fractional Laplacian , 2014 .

[5]  T. Bartsch,et al.  A natural constraint approach to normalized solutions of nonlinear Schr\"odinger equations and systems , 2016, 1605.07484.

[6]  L. Silvestre,et al.  Uniqueness of Radial Solutions for the Fractional Laplacian , 2013, 1302.2652.

[7]  M. Bhakta,et al.  Semilinear nonlocal elliptic equations with critical and supercritical exponents , 2016, 1608.07654.

[8]  T. Bartsch,et al.  Multiple normalized solutions for a competing system of Schrödinger equations , 2017, Calculus of Variations and Partial Differential Equations.

[9]  Simone Secchi,et al.  On fractional Schr\"odinger equations in (\mathbb{R}^N) without the Ambrosetti-Rabinowitz condition , 2012, 1210.0755.

[10]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[11]  S. Secchi On fractional Schrödinger equations in ℝN without the Ambrosetti-Rabinowitz condition , 2016 .

[12]  R. Servadei,et al.  A critical fractional equation with concave-convex power nonlinearities , 2013, 1306.3190.

[13]  Zhitao Zhang,et al.  Normalized solutions to the fractional Schrödinger equations with combined nonlinearities , 2020, Calculus of Variations and Partial Differential Equations.

[14]  E. Valdinoci,et al.  Nonlocal Diffusion and Applications , 2015, 1504.08292.

[15]  A. Pablo,et al.  On some critical problems for the fractional Laplacian operator , 2011, 1106.6081.

[16]  Binlin Zhang,et al.  A different approach to ground state solutions for p-Laplacian system with critical exponent , 2021, Appl. Math. Lett..

[17]  A. Pablo,et al.  Perturbations of a critical fractional equation , 2014 .

[18]  T. Bartsch,et al.  Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium , 2015, 1509.01994.

[19]  Xiaojun Chang,et al.  Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity , 2013 .

[20]  W. Zou,et al.  On critical systems involving fractional Laplacian , 2017 .

[21]  James Michael MacFarlane Existence , 2020, Transhumanism as a New Social Movement.

[22]  Enrico Valdinoci,et al.  From the long jump random walk to the fractional Laplacian , 2009, 0901.3261.

[23]  Jean-Michel Roquejoffre,et al.  Variational problems with free boundaries for the fractional Laplacian , 2010 .

[24]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[25]  N. Soave,et al.  Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case , 2018, Journal of Functional Analysis.

[26]  Tianling Jin,et al.  On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions , 2011, 1111.1332.

[27]  A. Quaas,et al.  Fundamental solutions and liouville type theorems for nonlinear integral operators , 2011 .

[28]  N. Soave,et al.  Normalized ground states for the NLS equation with combined nonlinearities , 2019 .

[29]  Luis Silvestre,et al.  Regularity of the obstacle problem for a fractional power of the laplace operator , 2007 .

[30]  Unione matematica italiana Lecture notes of the Unione matematica italiana , 2006 .

[31]  Nassif Ghoussoub,et al.  Duality and Perturbation Methods in Critical Point Theory , 1993 .

[32]  R. Frank Uniqueness of non-linear ground states for fractional Laplacians in R , 2013 .

[33]  Haim Brezis,et al.  Positive solutions of nonlinear elliptic equations involving critical sobolev exponents , 1983 .

[34]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[35]  W. Zou,et al.  Spikes of the two-component elliptic system in $${\mathbb {R}}^4$$R4 with the critical Sobolev exponent , 2019, Calculus of Variations and Partial Differential Equations.

[36]  Enrico Valdinoci,et al.  A Brezis-Nirenberg result for non-local critical equations in low dimension , 2013 .

[37]  Binlin Zhang,et al.  Complete classification of ground state solutions with different Morse index for critical fractional Laplacian system , 2020, Mathematical Methods in the Applied Sciences.

[38]  Enrico Valdinoci,et al.  A critical Kirchhoff type problem involving a nonlocal operator , 2013 .

[39]  T. Bartsch,et al.  Normalized solutions for a system of coupled cubic Schrödinger equations on R3 , 2016 .

[40]  A. Cotsiolis,et al.  Best constants for Sobolev inequalities for higher order fractional derivatives , 2004 .

[41]  Rupert L. Frank,et al.  Uniqueness of non-linear ground states for fractional Laplacians in $${\mathbb{R}}$$R , 2013 .

[42]  Rupert L. Frank,et al.  Uniqueness of non-linear ground states for fractional Laplacians in $${\mathbb{R}}$$R , 2010, 1009.4042.

[43]  M. Squassina,et al.  The Nehari manifold for fractional systems involving critical nonlinearities , 2015, 1509.02713.

[44]  D. Wrzosek,et al.  Proceedings of the Royal Society of Edinburgh , 1940, Nature.

[45]  Shuangjie Peng,et al.  Existence, non-degeneracy of proportional positive solutions and least energy solutions for a fractional elliptic system , 2017, Advances in Differential Equations.

[46]  Yannick Sire,et al.  Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates , 2010, 1012.0867.

[47]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[48]  L. Jeanjean Existence of solutions with prescribed norm for semilinear elliptic equations , 1997 .

[49]  G. Devillanova,et al.  A free fractional viscous oscillator as a forced standard damped vibration , 2016 .

[50]  A. Quaas,et al.  Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian , 2012, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.