Ultraviolet photoelectron spectra of coinage metal clusters

Ultraviolet photoelectron spectra (UPS) were recorded for mass‐selected negative clusters of copper (1–411 atoms), silver (1–60 atoms), and gold (1–233 atoms), using photodetachment lasers at 6.4 and 7.9 eV photon energy. The results provide a direct estimate of the vertical electron affinity (EA) of these clusters and information on the evolution of the d bands of copper and gold as a function of cluster size. The large even/odd alternation of EA in small clusters of these metals in earlier work is found to largely disappear as the cluster size exceeds 40 atoms. The ellipsoidal shell model is shown to be consistent with the observed EA behavior of all three metals, the predicted spherical shell closing at cluster 58 being evident for silver and gold. The UPS data show a smooth evolution of the d band toward that of the bulk metal.

[1]  A. Nitzan,et al.  On the nonclassical asymptotic behavior of electronic properties in metal clusters , 1991 .

[2]  K. Balasubramanian,et al.  Excited electronic states of Au3 , 1991 .

[3]  R. Smalley,et al.  Fullerene triplet state production and decay: R2PI probes of C60 and C70 in a supersonic beam , 1991 .

[4]  Christensen,et al.  Cu cluster shell structure at elevated temperatures. , 1991, Physical review letters.

[5]  S. Giorgio,et al.  Structure of supported palladium, silver and gold clusters , 1991 .

[6]  K. Hansen,et al.  Thermal electronic properties of alkali clusters , 1991 .

[7]  M. Seidl,et al.  Semiclassical variational calculation of liquid-drop model coefficients for metal clusters , 1991 .

[8]  Richard E. Smalley,et al.  Ammonia chemisorption studies on silicon cluster ions , 1991 .

[9]  R. Smalley,et al.  Ultraviolet photoelectron spectra of gallium arsenide clusters , 1990 .

[10]  B. R. Johnson,et al.  Vibrational autodetachment spectroscopy of Au−6 : Image‐charge‐bound states of a gold ring , 1990 .

[11]  Per E. M. Siegbahn,et al.  Electronic and geometric structure of the copper (Cun) cluster anions (n .ltoreq. 10) , 1990 .

[12]  Taylor,et al.  Ultraviolet photoelectron spectra of mass-selected copper clusters: Evolution of the 3d band. , 1990, Physical review letters.

[13]  Milani,et al.  Nonjellium-to-jellium transition in aluminum cluster polarizabilities. , 1989, Physical review letters.

[14]  A. W. Castleman,et al.  Thermal metal cluster anion reactions: Behavior of aluminum clusters with oxygen , 1989 .

[15]  L. Bloomfield,et al.  A time‐of‐flight mass spectrometer for large molecular clusters produced in supersonic expansions , 1989 .

[16]  C. Bauschlicher On the electron affinity of Au3 , 1989 .

[17]  J. Maier Ion and Cluster Ion Spectroscopy and Structure , 1989 .

[18]  R. Smalley,et al.  UPS of negative aluminum clusters , 1988 .

[19]  R. Smalley,et al.  Ultraviolet photoelectron spectroscopy of copper clusters , 1988 .

[20]  A. Nitzan,et al.  On the ionization potential of small metal and dielectric particles , 1988 .

[21]  R. Smalley,et al.  Fourier transform ion cyclotron resonance studies of H2 chemisorption on niobium cluster cations , 1988 .

[22]  S. A. Moir,et al.  Extended Hueckel calculations on copper clusters , 1988 .

[23]  R. Smalley,et al.  Magnetic time-of-flight photoelectron spectrometer for mass-selected negative cluster ions , 1987 .

[24]  T. George,et al.  The Hückel model for small metal clusters. III. Anion structures and HMO electron affinities , 1987 .

[25]  M. Chou,et al.  Physics of metal clusters , 1987 .

[26]  T. George,et al.  The Hückel model for small metal clusters. I. Geometry, stability, and relationship to graph theory , 1987 .

[27]  Ramos,et al.  Dirac scattered-wave calculations on an icosahedral Au13 cluster. , 1987, Physical review. B, Condensed matter.

[28]  Joe Ho,et al.  Photoelectron spectroscopy of mass-selected metal cluster anions. I. Cu−n, n=1–10 , 1987 .

[29]  M. Chou,et al.  Alkali metal clusters and the jellium model , 1987 .

[30]  M. Chou,et al.  Electronic Shell Structure and Metal Clusters , 1987 .

[31]  D. Papaconstantopoulos,et al.  Handbook of the Band Structure of Elemental Solids , 1986 .

[32]  T. Sakurai,et al.  Mass distributions of negative cluster ions of copper, silver, and gold , 1986 .

[33]  Alp,et al.  Structure of copper microclusters isolated in solid argon. , 1986, Physical Review Letters.

[34]  T. Sakurai,et al.  Correlation between mass distributions of zinc, cadmium clusters and electronic shell structure , 1986 .

[35]  M. Kappes,et al.  On the manifestation of electronic structure effects in metal clusters , 1986 .

[36]  Marvin L. Cohen,et al.  Electronic shell structure in simple metal clusters , 1986 .

[37]  Clemenger,et al.  Ellipsoidal shell structure in free-electron metal clusters. , 1985, Physical review. B, Condensed matter.

[38]  Saunders,et al.  Polarizability of alkali clusters. , 1985, Physical review. B, Condensed matter.

[39]  Winston A. Saunders,et al.  Electronic Shell Structure and Abundances of Sodium Clusters , 1984 .

[40]  Cary Y. Yang,et al.  Relativistic electronic structures of the Ag2 and Au2 molecules , 1984 .

[41]  W. Ekardt,et al.  Work function of small metal particles: Self-consistent spherical jellium-background model , 1984 .

[42]  D. E. Beck Self-consistent calculation of the electronic structure of small jellium spheres , 1984 .

[43]  J. Noffke,et al.  Self-consistent relativistic band structure of the noble metals , 1984 .

[44]  D. Wood Classical size dependence of the work function of small metallic spheres , 1981 .

[45]  W. C. Lineberger,et al.  Electron affinities of Cu and Ag , 1973 .

[46]  W. C. Lineberger,et al.  Dye-laser photodetachment studies of Au−, Pt−, PtN−, and Ag− , 1973 .

[47]  John M. Smith NONEQUILIBRIUM IONIZATION IN WET ALKALI METAL VAPORS , 1965 .