Optimal data encoding and fusion in sensor networks

The paper considers the sensor network whose sensors observe a common quantity and are affected by arbitrary additive bounded noises with a known upper bound. During the experiment, any sensor can communicate only a finite and given number of bits of information to the decision center. The contributions of the particular sensors, the rules of data encoding, decoding, and fusion, as well as the estimation scheme should be designed to achieve the best overall performance in estimation of the observed quantity by the decision center. The optimal algorithm is obtained that minimizes the maximal feasible error. It is shown that it considerably over-performs a ‘natural’ algorithm proposed in recent papers in the area and examined only in the idealized case of noiseless sensors. This analysis highlights the need for special decentralized data encoding rules that are robust against the sensor noises in the context of networked cooperative observation. Such a rule is the core of the proposed optimal algorithm.

[1]  Ananthram Swami,et al.  Quantization for Maximin ARE in Distributed Estimation , 2007, IEEE Transactions on Signal Processing.

[2]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[3]  Sekhar Tatikonda,et al.  Some scaling properties of large distributed control systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[4]  Andrey V. Savkin,et al.  Analysis and synthesis of networked control systems: Topological entropy, observability, robustness and optimal control , 2005, Autom..

[5]  Zhi-Quan Luo,et al.  Universal decentralized estimation in a bandwidth constrained sensor network , 2005, IEEE Transactions on Information Theory.

[6]  Rui Zhang,et al.  Design of optimal quantizers for distributed source coding , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[7]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[8]  Toby Berger,et al.  The quadratic Gaussian CEO problem , 1997, IEEE Trans. Inf. Theory.

[9]  Frans Louis Henri Marie Stumpers,et al.  A bibliography of Information Theory (communication theory-cybernetics). , 1953 .

[10]  A.S. Matveev,et al.  Stabilization of stochastic linear plants via limited capacity stochastic communication channels , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[11]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[12]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[13]  J. Hespanha,et al.  Towards the Control of Linear Systems with Minimum Bit-Rate , 2002 .

[14]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[15]  John C. Kieffer,et al.  Stochastic stability for feedback quantization schemes , 1982, IEEE Trans. Inf. Theory.

[16]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[17]  Kannan Ramchandran,et al.  Distributed source coding using syndromes (DISCUS): design and construction , 2003, IEEE Trans. Inf. Theory.

[18]  Zhi-Quan Luo An isotropic universal decentralized estimation scheme for a bandwidth constrained ad hoc sensor network , 2005, IEEE J. Sel. Areas Commun..

[19]  Dragan Nesic,et al.  Input-to-State Stabilization of Linear Systems With Quantized State Measurements , 2007, IEEE Transactions on Automatic Control.

[20]  X.R. Li,et al.  Optimal sensor data quantization for best linear unbiased estimation fusion , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[21]  Joel Max,et al.  Quantizing for minimum distortion , 1960, IRE Trans. Inf. Theory.

[22]  Haralabos C. Papadopoulos,et al.  Sequential signal encoding from noisy measurements using quantizers with dynamic bias control , 2001, IEEE Trans. Inf. Theory.

[23]  J. Cardinal,et al.  Joint entropy-constrained multiterminal quantization , 2002, Proceedings IEEE International Symposium on Information Theory,.

[24]  Zixiang Xiong,et al.  Distributed source coding for sensor networks , 2004, IEEE Signal Processing Magazine.

[25]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[26]  K. J. Ray Liu,et al.  Handbook on Array Processing and Sensor Networks , 2010 .

[27]  Robin J. Evans,et al.  Stabilising decentralised linear systems under data rate constraints , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[28]  Shun-ichi Amari,et al.  Parameter estimation with multiterminal data compression , 1995, IEEE Trans. Inf. Theory.

[29]  Robert M. Gray,et al.  Encoding of correlated observations , 1987, IEEE Trans. Inf. Theory.

[30]  Haralabos C. Papadopoulos,et al.  Sequential signal encoding and estimation for distributed sensor networks , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[31]  A. Matveev,et al.  Estimation and Control over Communication Networks , 2008 .

[32]  Allen Gersho,et al.  Theory of an Adaptive Quantizer , 1973, IEEE Trans. Commun..

[33]  Ying Zhao,et al.  Joint estimation and compression of correlated nonbinary sources using punctured turbo codes , 2005, IEEE Transactions on Communications.

[34]  J. Barros,et al.  Diophantine Index Assignments for Distributed Source Coding , 2007, 2007 IEEE Information Theory Workshop.

[35]  Yunnan Wu,et al.  On Practical Design for Joint Distributed Source and Network Coding , 2009, IEEE Transactions on Information Theory.

[36]  Alejandro Ribeiro,et al.  Bandwidth-constrained distributed estimation for wireless sensor networks-part II: unknown probability density function , 2006, IEEE Transactions on Signal Processing.

[37]  John A. Gubner,et al.  Distributed estimation and quantization , 1993, IEEE Trans. Inf. Theory.

[38]  Mikael Skoglund,et al.  Distributed quantization over noisy channels , 2009, IEEE Transactions on Communications.

[39]  Biswanath Mukherjee,et al.  Wireless sensor network survey , 2008, Comput. Networks.

[40]  Amy R. Reibman,et al.  Design of quantizers for decentralized estimation systems , 1993, IEEE Trans. Commun..

[41]  Haralabos C. Papadopoulos Efficient digital encoding and estimation of noisy signals , 1998 .

[42]  Andrey V. Savkin,et al.  Multirate Stabilization of Linear Multiple Sensor Systems via Limited Capacity Communication Channels , 2005, SIAM J. Control. Optim..

[43]  Alejandro Ribeiro,et al.  Bandwidth-constrained distributed estimation for wireless sensor Networks-part I: Gaussian case , 2006, IEEE Transactions on Signal Processing.

[44]  NARIMAN FARVARDIN,et al.  Optimal quantizer design for noisy channels: An approach to combined source - channel coding , 1987, IEEE Trans. Inf. Theory.

[45]  John N. Tsitsiklis,et al.  Extremal properties of likelihood-ratio quantizers , 1993, IEEE Trans. Commun..

[46]  Zhi-Quan Luo,et al.  Decentralized estimation in an inhomogeneous sensing environment , 2005, IEEE Transactions on Information Theory.

[47]  Gerhard Maierbacher,et al.  Low-complexity coding and source-optimized clustering for large-scale sensor networks , 2008, TOSN.

[48]  Ian F. Akyildiz,et al.  Wireless sensor and actor networks: research challenges , 2004, Ad Hoc Networks.

[49]  Pramod K. Varshney,et al.  Distributed Detection and Data Fusion , 1996 .

[50]  Shlomo Shamai,et al.  Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.

[51]  Hiroaki Kobayashi,et al.  Controllability under decentralized information structure , 1978 .

[52]  Zixiang Xiong,et al.  Wyner-Ziv coding based on TCQ and LDPC codes , 2005, IEEE Transactions on Communications.

[53]  Paul A. Fuhrmann,et al.  Mathematical Theory of Networks and Systems , 1984 .

[54]  R.J. Evans,et al.  Cooperative networked stabilisability of linear systems with measurement noise , 2007, 2007 Mediterranean Conference on Control & Automation.

[55]  Toby Berger,et al.  The CEO problem [multiterminal source coding] , 1996, IEEE Trans. Inf. Theory.

[56]  Bonaventure Intercontinental,et al.  ON DECISION AND CONTROL , 1985 .

[57]  Giuseppe Longo,et al.  The information theory approach to communications , 1977 .

[58]  Yasutada Oohama,et al.  The Rate-Distortion Function for the Quadratic Gaussian CEO Problem , 1998, IEEE Trans. Inf. Theory.

[59]  Zixiang Xiong,et al.  Distributed source coding , 2006, Signal Processing.

[60]  Vinod M. Prabhakaran,et al.  Rate region of the quadratic Gaussian CEO problem , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..