Regression Analysis of Asynchronous Longitudinal Functional and Scalar Data

Many modern large-scale longitudinal neuroimaging studies, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, have collected/are collecting asynchronous scalar and functional var...

[1]  J. Fine,et al.  On last observation carried forward and asynchronous longitudinal regression analysis , 2016 .

[2]  Zhiliang Ying,et al.  Semiparametric and Nonparametric Regression Analysis of Longitudinal Data , 2001 .

[3]  Snigdhansu Chatterjee,et al.  © Institute of Mathematical Statistics, 2005 GENERALIZED BOOTSTRAP FOR ESTIMATING EQUATIONS , 2022 .

[4]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[5]  C. Jack,et al.  Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging☆ , 2013, NeuroImage: Clinical.

[6]  Jianhua Z. Huang,et al.  Bootstrap consistency for general semiparametric $M$-estimation , 2009, 0906.1310.

[7]  Ciprian Crainiceanu,et al.  Longitudinal scalar-on-functions regression with application to tractography data. , 2013, Biostatistics.

[8]  Hongtu Zhu,et al.  Genome-wide association analysis of secondary imaging phenotypes from the Alzheimer's disease neuroimaging initiative study , 2017, NeuroImage.

[9]  Norbert Schuff,et al.  White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI , 2009, Brain : a journal of neurology.

[10]  Jane-Ling Wang,et al.  Statistica Sinica Preprint No : SS-2017-0505 Title FMEM : Functional Mixed Effects Models for Longitudinal Functional Responses , 2018 .

[11]  Charlotte DiStefano,et al.  A multi‐dimensional functional principal components analysis of EEG data , 2017, Biometrics.

[12]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[13]  Xiao Wang,et al.  Generalized Scalar-on-Image Regression Models via Total Variation , 2017, Journal of the American Statistical Association.

[14]  Dennis D. Cox,et al.  Efficient Bayesian hierarchical functional data analysis with basis function approximations using Gaussian–Wishart processes , 2015, Biometrics.

[15]  D. Kang,et al.  Genome-wide association study of childhood acute lymphoblastic leukemia in Korea. , 2010, Leukemia research.

[16]  B. Caffo,et al.  MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS. , 2009, The annals of applied statistics.

[17]  H. Müller,et al.  Modelling function‐valued stochastic processes, with applications to fertility dynamics , 2017 .

[18]  H. Muller,et al.  Functional data analysis for density functions by transformation to a Hilbert space , 2016, 1601.02869.

[19]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[20]  Ana-Maria Staicu,et al.  Longitudinal functional data analysis , 2015, Stat.

[21]  Ana-Maria Staicu,et al.  Classical testing in functional linear models , 2016, Journal of nonparametric statistics.

[22]  D. Ruppert Selecting the Number of Knots for Penalized Splines , 2002 .

[23]  D. Yekutieli,et al.  Selective Sign-Determining Multiple Confidence Intervals with FCR Control , 2014, Statistica Sinica.

[24]  M. Filippi,et al.  White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging , 2002, Journal of neurology, neurosurgery, and psychiatry.

[25]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[26]  Wonyul Lee,et al.  Bayesian Semiparametric Functional Mixed Models for Serially Correlated Functional Data, With Application to Glaucoma Data , 2018, Journal of the American Statistical Association.

[27]  S V Faraone,et al.  Genetics of Alzheimer's disease. , 1996, Journal of the Formosan Medical Association = Taiwan yi zhi.

[28]  Ana-Maria Staicu,et al.  Functional Additive Mixed Models , 2012, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[29]  Jialiang Li,et al.  A Functional Varying-Coefficient Single-Index Model for Functional Response Data , 2017, Journal of the American Statistical Association.

[30]  Fabian Scheipl,et al.  A general framework for functional regression modelling , 2017 .

[31]  Norbert Schuff,et al.  Alzheimer’s Disease Neuroimaging Initiative: A one-year follow up study using Tensor-Based Morphometry correlating degenerative rates, biomarkers and cognition , 2009 .

[32]  Yongtao Guan,et al.  Functional Principal Component Analysis of Spatiotemporal Point Processes With Applications in Disease Surveillance , 2014, Journal of the American Statistical Association.

[33]  Ming-Yen Cheng,et al.  Statistical Estimation in Generalized Multiparameter Likelihood Models , 2009 .

[34]  R. Carroll,et al.  Semiparametric Regression for Clustered Data Using Generalized Estimating Equations , 2001 .

[35]  D. Ruppert,et al.  Penalized Spline Estimation for Partially Linear Single-Index Models , 2002 .

[36]  Damla Şentürk,et al.  Modeling time‐varying effects with generalized and unsynchronized longitudinal data , 2013, Statistics in medicine.

[37]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[38]  So Young Park,et al.  Simple fixed‐effects inference for complex functional models , 2016, Biostatistics.

[39]  Wenjiang J. Fu,et al.  Penalized Estimating Equations , 2003, Biometrics.

[40]  Mark E. Schmidt,et al.  The Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception , 2012, Alzheimer's & Dementia.

[41]  S. Wood Low‐Rank Scale‐Invariant Tensor Product Smooths for Generalized Additive Mixed Models , 2006, Biometrics.

[42]  H. Müller,et al.  Modeling Repeated Functional Observations , 2012 .

[43]  Zongwu Cai,et al.  Adaptive varying‐coefficient linear models , 2000 .

[44]  Ciprian M Crainiceanu,et al.  Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements , 2012, Journal of the Royal Statistical Society. Series C, Applied statistics.

[45]  Md Nazmul Islam,et al.  Longitudinal dynamic functional regression , 2016, Journal of the Royal Statistical Society. Series C, Applied statistics.

[46]  Jaroslaw Harezlak,et al.  Longitudinal functional models with structured penalties , 2012, Statistical modelling.

[47]  S. Lahiri,et al.  Significance tests for functional data with complex dependence structure. , 2015, Journal of statistical planning and inference.

[48]  D. Zeng,et al.  Regression analysis of sparse asynchronous longitudinal data , 2015, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[49]  Hongyuan Cao,et al.  Analysis of asynchronous longitudinal data with partially linear models , 2017 .

[50]  Fabian Scheipl,et al.  Generalized Functional Additive Mixed Models , 2015, 1506.05384.

[51]  Jianqing Fan,et al.  Generalized Partially Linear Single-Index Models , 1997 .

[52]  Xiaoqin Xiong,et al.  A binning method for analyzing mixed longitudinal data measured at distinct time points. , 2010, Statistics in medicine.

[53]  Mark R Schultz,et al.  False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. , 2014, Journal of clinical epidemiology.

[54]  Marina Vannucci,et al.  Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis , 2003 .

[55]  Jeffrey S. Morris,et al.  Wavelet‐based functional mixed models , 2006, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[56]  H. Cardot,et al.  Estimation in generalized linear models for functional data via penalized likelihood , 2005 .

[57]  Damla Sentürk,et al.  Hybrid principal components analysis for region-referenced longitudinal functional EEG data. , 2018, Biostatistics.