Weakly stable multidimensional shocks

Abstract We study the linear stability of multidimensional shock waves for systems of conservation laws in the case where Majda's uniform stability condition is violated. The linearized problem is attacked using the “good unknown” of Alinhac. We prove an energy estimate and show that the solutions to the linearized problem have singularities localized along bicharacteristic curves originating from the boundary. The application to isentropic gas dynamics is detailed.

[1]  Jean-François Coulombel,et al.  Weak Stability of Nonuniformly Stable Multidimensional Shocks , 2002, SIAM J. Math. Anal..

[2]  Bernold Fiedler,et al.  Ergodic theory, analysis, and efficient simulation of dynamical systems , 2001 .

[3]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[4]  D. Serre Systems of conservation laws , 1999 .

[5]  Serge Alinhac,et al.  Blowup for Nonlinear Hyperbolic Equations , 1995 .

[6]  A. Majda The stability of multi-dimensional shock fronts , 1983 .

[7]  D. Serre,et al.  Generic types and transitions in hyperbolic initial–boundary-value problems , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[8]  L. Hörmander,et al.  Lectures on Nonlinear Hyperbolic Differential Equations , 1997 .

[9]  S. Benzoni-Gavage,et al.  Stability of Subsonic Planar Phase Boundaries in a van der Waals Fluid , 1999 .

[10]  M. Sablé-Tougeron Existence pour un problème de l'élastodynamique Neumann non linéaire en dimension 2 , 1988 .

[11]  S. Benzoni-Gavage Stability of multi-dimensional phase transitions in a Van Der Waals fluid , 1998 .

[12]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[13]  C. Rohde,et al.  Existence, Bifurcation, and Stability of Profiles for Classical and Non-Classical Shock Waves , 2001 .

[14]  A. Majda The existence of multi-dimensional shock fronts , 1983 .

[15]  H. Kreiss Initial boundary value problems for hyperbolic systems , 1970 .

[16]  Jacques Chazarain,et al.  Introduction to the theory of linear partial differential equations , 1982 .

[17]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[18]  Tai-Ping Liu,et al.  Advances in the Theory of Shock Waves , 2001 .

[19]  J. Ralston Note on a paper of Kreiss , 1971 .

[20]  A. Blokhin,et al.  Stability of fast parallel MHD shock waves in polytropic gas , 1999 .

[21]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[22]  G. Métivier The Block Structure Condition for Symmetric Hyperbolic Systems , 2000 .

[23]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[24]  S. Alinhac,et al.  Existence d'ondes de rarefaction pour des systems quasi‐lineaires hyperboliques multidimensionnels , 1989 .

[25]  D. Serre,et al.  La transition vers l’instabilité pour les ondes de choc multi-dimensionnelles , 2001 .

[26]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[27]  A. Mokrane Problemes mixtes hyperboliques non lineaires , 1987 .

[28]  Guy Métivier,et al.  Stability of Multidimensional Shocks , 2001 .

[29]  Tosio Kato Perturbation theory for linear operators , 1966 .

[30]  Jacques Francheteau,et al.  Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels , 1998, Astérisque.