Core problems in the bi-criteria {0,1}-knapsack

The most e¢cient algorithms for solving single criterion {0,1}-knapsack problems are based on the core concept and the core problem. However, those concepts remain unnoticed in the multiple criteria case. In this paper we bring them to this topic. A large amount of e¢cient solutions are considered for analysing the importance of the core itself and the core problem. The results show that the properties of the core in single criterion experiments are also observed in the solutions of the bi-criteria problem. These o

[1]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[2]  Xavier Gandibleux,et al.  The Supported Solutions Used as a Genetic Information in a Population Heuristics , 2001, EMO.

[3]  José Rui Figueira,et al.  A scatter search method for bi-criteria {0, 1}-knapsack problems , 2006, Eur. J. Oper. Res..

[4]  José Rui Figueira,et al.  Solving bicriteria 0-1 knapsack problems using a labeling algorithm , 2003, Comput. Oper. Res..

[5]  David Pisinger,et al.  Core Problems in Knapsack Algorithms , 1999, Oper. Res..

[6]  David Pisinger,et al.  An expanding-core algorithm for the exact 0-1 knapsack problem , 1995 .

[7]  Carlos Gomes da Silva,et al.  Geometrical con ... guration of the Pareto frontier of bi-criteria { 0 , 1 }-knapsack problems , 2004 .

[8]  Egon Balas,et al.  An Algorithm for Large Zero-One Knapsack Problems , 1980, Oper. Res..

[9]  G. Dantzig Discrete-Variable Extremum Problems , 1957 .

[10]  David Pisinger,et al.  A Minimal Algorithm for the 0-1 Knapsack Problem , 1997, Oper. Res..

[11]  S. Martello,et al.  Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem , 1999 .

[12]  Marc Despontin,et al.  Multiple Criteria Optimization: Theory, Computation, and Application, Ralph E. Steuer (Ed.). Wiley, Palo Alto, CA (1986) , 1987 .

[13]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[14]  S. Martello,et al.  A New Algorithm for the 0-1 Knapsack Problem , 1988 .

[15]  Gérard Plateau,et al.  An algorithm for the solution of the 0–1 knapsack problem , 2005, Computing.

[16]  Jacques Teghem,et al.  Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..

[17]  Ralph E. Steuer Multiple criteria optimization , 1986 .