Organic–inorganic lead halide perovskite solar cell materials: A possible stability problem

Abstract The methyl ammonium lead halides are promising visible-light absorbers for application in solar cells. The most common synthetic routes use the solid binary halides as one of the starting compounds. These binary lead halides exhibit photodecomposition. In view of the perovskite crystal structure of the methyl ammonium lead halides, it is possible that also here the lead halide parts may exhibit photodecomposition. The mechanism of the photodecomposition of the binary lead halides is presented in detail. Based on this mechanism the trapping of photo-generated electrons on the lead ions in these perovskite materials should be studied in detail.

[1]  M. Lumbreras,et al.  Crystal growth and characterization of mixed lead halides PbCl2xBr2(1-x) , 1985 .

[2]  J. Schoonman Hole conduction in pure and doped lead bromide crystals , 1972 .

[3]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[4]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[5]  M. Tubbs The optical absorption spectra of metal iodides with layer structures , 1968 .

[6]  D. Jones Growth of Lead Fluoride Crystals from the Melt , 1955 .

[7]  G. Schwab,et al.  Festkörpereigenschaften und Fehlordnung von Bleichlorid , 1967 .

[8]  M. Lumbreras,et al.  Optical and Dielectric-Properties of Mixed Lead Halides Pbcl2xbr2(1-X) , 1991 .

[9]  David Cahen,et al.  Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells. , 2014, The journal of physical chemistry letters.

[10]  K. J. D. Vries,et al.  Note on the Koch and Wagner effect in lead chloride single crystals , 1963 .

[11]  Carl Renz,et al.  Zur Photochemie der Bleiverbindungen , 1921 .

[12]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[13]  A. J. Forty,et al.  The photodecomposition of lead iodide , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[15]  A. J. Forty,et al.  The formation of photographic images in single crystals of lead iodide , 1963 .

[16]  H. Hoshino,et al.  Ionic Conductivity of Lead Chloride Crystals , 1969 .

[17]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[18]  H. Henisch,et al.  Properties of semiconducting lead iodide , 1966 .

[19]  J. Schoonman The Ionic Conductivity of Pure and Doped Lead Bromide Single Crystals , 1972 .

[20]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[21]  J. Schoonman,et al.  Crystal growth, ionic conductivity, and photolysis of pure and impurity-doped lead bromide single crystals , 1967 .

[22]  David Cahen,et al.  High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite. , 2013, The journal of physical chemistry letters.

[23]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[24]  Philip Schulz,et al.  Interface energetics in organo-metal halide perovskite-based photovoltaic cells , 2014 .

[25]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[26]  J W Mellor,et al.  A comprehensive treatise on inorganic and theoretical chemistry vol.VIII N, Cl , 1922 .

[27]  M. Lumbreras,et al.  Electrical conductivity of mixed lead halides PbCl2xBr2(1−x) , 1988 .

[28]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[29]  J. Teuscher,et al.  Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells , 2014, Nature Photonics.

[30]  N. Nachtrieb,et al.  The chemistry of imperfect crystals , 1973 .

[31]  A. F. Halff,et al.  An experimental investigation of the photoconductivity of lead halides , 1977 .

[32]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[33]  J. Schoonman,et al.  Anion vacancies in lead bromide single crystals , 1968 .

[34]  J. Schoonman,et al.  CuInS2 TiO2 heterojunctions solar cells obtained by atomic layer deposition , 2003 .

[35]  Nripan Mathews,et al.  Current progress and future perspectives for organic/inorganic perovskite solar cells , 2014 .

[36]  G. Somorjai,et al.  Photodecomposition of Lead Chloride , 1966 .

[37]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.