Circuit Quantum Simulation of a Tomonaga-Luttinger Liquid with an Impurity

The Tomonaga-Luttinger liquid (TLL) concept is believed to generically describe the strongly-correlated physics of one-dimensional systems at low temperatures. A hallmark signature in 1D conductors is the quantum phase transition between metallic and insulating states induced by a single impurity. However, this transition impedes experimental explorations of real-world TLLs. Furthermore, its theoretical treatment, explaining the universal energy rescaling of the conductance at low temperatures, has so far been achieved exactly only for specific interaction strengths. Quantum simulation can provide a powerful workaround. Here, a hybrid metal-semiconductor dissipative quantum circuit is shown to implement the analogue of a TLL of adjustable electronic interactions comprising a single, fully tunable scattering impurity. Measurements reveal the renormalization group `beta-function' for the conductance that completely determines the TLL universal crossover to an insulating state upon cooling. Moreover, the characteristic scaling energy locating at a given temperature the position within this conductance renormalization flow is established over nine decades versus circuit parameters, and the out-of-equilibrium regime is explored. With the quantum simulator quality demonstrated from the precise parameter-free validation of existing and novel TLL predictions, quantum simulation is achieved in a strong sense, by elucidating interaction regimes which resist theoretical solutions.

[1]  A. Ouerghi,et al.  Heat Coulomb blockade of one ballistic channel , 2017, Nature Physics.

[2]  U. Gennser,et al.  Tunable quantum criticality and super-ballistic transport in a “charge” Kondo circuit , 2017, Science.

[3]  T. Fujisawa,et al.  Waveform measurement of charge- and spin-density wavepackets in a chiral Tomonaga–Luttinger liquid , 2017, Nature Physics.

[4]  A. Ouerghi,et al.  Primary thermometry triad at 6 mK in mesoscopic circuits , 2016, Nature Communications.

[5]  F. Portier,et al.  Interacting electrodynamics of short coherent conductors in quantum circuits , 2016, 1605.00098.

[6]  E. Sela,et al.  Universality and Scaling in a Charge Two-Channel Kondo Device. , 2016, Physical review letters.

[7]  A. Cavanna,et al.  Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states , 2015, Nature.

[8]  D. Goldhaber-Gordon,et al.  Universal Fermi liquid crossover and quantum criticality in a mesoscopic system , 2015, Nature.

[9]  G. Fève,et al.  Hong-Ou-Mandel experiment for temporal investigation of single-electron fractionalization , 2015, Nature Communications.

[10]  D. Estève,et al.  Dynamical Coulomb blockade of shot noise. , 2014, Physical review letters.

[11]  Y. Kao,et al.  Quantum impurity in a Luttinger liquid: Universal conductance with entanglement renormalization , 2014, 1402.5229.

[12]  D. Mahalu,et al.  Proliferation of neutral modes in fractional quantum Hall states , 2013, Nature Communications.

[13]  G. Biasiol,et al.  Tunable Nonequilibrium Luttinger Liquid Based on Counterpropagating Edge Channels , 2013, 1312.5819.

[14]  T. Fujisawa,et al.  Fractionalized wave packets from an artificial Tomonaga-Luttinger liquid. , 2013, Nature nanotechnology.

[15]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[16]  G. Fève,et al.  Separation of neutral and charge modes in one-dimensional chiral edge channels , 2013, Nature Communications.

[17]  A. Cavanna,et al.  Tomonaga–Luttinger physics in electronic quantum circuits , 2013, Nature Communications.

[18]  G. Finkelstein,et al.  Observation of Majorana quantum critical behaviour in a resonant level coupled to a dissipative environment , 2012, Nature Physics.

[19]  Dong E. Liu,et al.  Quantum phase transition in a resonant level coupled to interacting leads , 2012, Nature.

[20]  T. Giamarchi SOME EXPERIMENTAL TESTS OF TOMONAGA–LUTTINGER LIQUIDS , 2012, 1308.2731.

[21]  D. Mailly,et al.  Chargeless heat transport in the fractional quantum Hall regime. , 2012, Physical review letters.

[22]  D. Mailly,et al.  Strong back-action of a linear circuit on a single electronic quantum channel , 2011, 1108.6216.

[23]  M. Salmhofer,et al.  Functional renormalization group approach to correlated fermion systems , 2011, 1105.5289.

[24]  S. Florens,et al.  Numerical renormalization group at marginal spectral density: application to tunneling in Luttinger liquids. , 2011, Physical review letters.

[25]  D. A. Ritchie,et al.  Probing Spin-Charge Separation in a Tomonaga-Luttinger Liquid , 2009, Science.

[26]  B. Halperin,et al.  Charge fractionalization in nonchiral Luttinger systems , 2008, 0803.0744.

[27]  D. Mailly,et al.  Experimental test of the dynamical coulomb blockade theory for short coherent conductors. , 2007, Physical review letters.

[28]  Y. Oreg,et al.  Observation of the two-channel Kondo effect , 2006, Nature.

[29]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[30]  M. Vojta Impurity quantum phase transitions , 2004, cond-mat/0412208.

[31]  S. Andergassen,et al.  Impurity and correlation effects on transport in one-dimensional quantum wires , 2004, cond-mat/0411310.

[32]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[33]  F. Beltram,et al.  Interedge strong-to-weak scattering evolution at a constriction in the fractional quantum Hall regime. , 2004, Physical review letters.

[34]  H. Saleur,et al.  One-channel conductor in an ohmic environment: mapping to a Tomonaga-Luttinger liquid and full counting statistics. , 2003, Physical review letters.

[35]  A. Chang Chiral Luttinger liquids at the fractional quantum Hall edge , 2003 .

[36]  K. West,et al.  Tunneling Spectroscopy of the Elementary Excitations in a One-Dimensional Wire , 2002, Science.

[37]  A. Andreev,et al.  Thermopower of a single-electron transistor in the regime of strong inelastic cotunneling , 2002, cond-mat/0201161.

[38]  U. Schollwoeck,et al.  Scaling behavior of impurities in mesoscopic Luttinger liquids , 2001, cond-mat/0104336.

[39]  M. Lavagna Quantum phase transitions , 2001, cond-mat/0102119.

[40]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[41]  M. Gabay,et al.  Fractional excitations in the Luttinger liquid , 1999, cond-mat/9909295.

[42]  Leon Balents,et al.  Luttinger-liquid behaviour in carbon nanotubes , 1998, Nature.

[43]  D. Mahalu,et al.  Direct observation of a fractional charge , 1997, Nature.

[44]  France.,et al.  Observation of the e/3 Fractionally Charged Laughlin Quasiparticle , 1997, cond-mat/9706307.

[45]  West,et al.  Observation of Chiral Luttinger Behavior in Electron Tunneling into Fractional Quantum Hall Edges. , 1996, Physical review letters.

[46]  Leung,et al.  Dynamical simulation of transport in one-dimensional quantum wires. , 1995, Physical review letters.

[47]  Matveev,et al.  Theory of strong inelastic cotunneling. , 1995, Physical review. B, Condensed matter.

[48]  Saleur,et al.  Exact nonequilibrium transport through point contacts in quantum wires and fractional quantum Hall devices. , 1995, Physical review. B, Condensed matter.

[49]  Matveev Coulomb blockade at almost perfect transmission. , 1994, Physical review. B, Condensed matter.

[50]  A. Ludwig,et al.  Exact conductance through point contacts in the nu =1/3 fractional quantum Hall Effect. , 1994, Physical review letters.

[51]  Fisher,et al.  Resonant tunneling between quantum Hall edge states. , 1993, Physical review letters.

[52]  Fisher,et al.  Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. , 1992, Physical review. B, Condensed matter.

[53]  D. Chklovskii,et al.  Electrostatics of edge channels. , 1992, Physical review. B, Condensed matter.

[54]  Schoen,et al.  Single-electron tunneling in systems of small junctions coupled to an electromagnetic environment. , 1991, Physical review. B, Condensed matter.

[55]  P. Fendley,et al.  Scattering and thermodynamics of fractionally-charged supersymmetric solitons , 1991, hep-th/9111014.

[56]  F. Haldane,et al.  Luttinger liquid theory of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas , 1981 .

[57]  L. Faddeev,et al.  Quantum inverse problem method. I , 1979 .

[58]  J. M. Luttinger An Exactly Soluble Model of a Many‐Fermion System , 1963 .

[59]  Thierry Giamarchi,et al.  Quantum physics in one dimension , 2004 .

[60]  S. Sachdev Quantum Phase Transitions: A first course , 1999 .

[61]  Michel Devoret,et al.  Single Charge Tunneling , 1992 .

[62]  F. D. M. Haldanef ‘Luttinger liquid theory’ of one-dimensional quantum fluids: I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas , 1981 .