Direct Observation of Twisted Surface skyrmions in Bulk Crystals.

Magnetic skyrmions in noncentrosymmetric helimagnets with D_{n} symmetry are Bloch-type magnetization swirls with a helicity angle of ±90°. At the surface of helimagnetic thin films below a critical thickness, a twisted skyrmion state with an arbitrary helicity angle has been proposed; however, its direct experimental observation has remained elusive. Here, we show that circularly polarized resonant elastic x-ray scattering is able to unambiguously measure the helicity angle of surface skyrmions, providing direct experimental evidence that a twisted skyrmion surface state also exists in bulk systems. The exact surface helicity angles of twisted skyrmions for both left- and right-handed chiral bulk Cu_{2}OSeO_{3}, in the single as well as in the multidomain skyrmion lattice state, are determined, revealing their detailed internal structure. Our findings suggest that a skyrmion surface reconstruction is a universal phenomenon, stemming from the breaking of translational symmetry at the interface.

[1]  A. Fert,et al.  Chirality in Magnetic Multilayers Probed by the Symmetry and the Amplitude of Dichroism in X-Ray Resonant Magnetic Scattering. , 2017, Physical review letters.

[2]  T. Hesjedal,et al.  Direct experimental determination of spiral spin structures via the dichroism extinction effect in resonant elastic soft x-ray scattering , 2017 .

[3]  K. Everschor-Sitte,et al.  New Boundary-Driven Twist States in Systems with Broken Spatial Inversion Symmetry. , 2017, Physical review letters.

[4]  Stefan Blügel,et al.  Control of morphology and formation of highly geometrically confined magnetic skyrmions , 2017, Nature Communications.

[5]  Yu-heng Zhang,et al.  Enhanced Stability of the Magnetic Skyrmion Lattice Phase under a Tilted Magnetic Field in a Two-Dimensional Chiral Magnet. , 2017, Nano letters.

[6]  C. Felser,et al.  Magnetic antiskyrmions above room temperature in tetragonal Heusler materials , 2017, Nature.

[7]  T. Hesjedal,et al.  Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3 , 2017, Nature Communications.

[8]  Y. Tokura,et al.  Temperature and Magnetic Field Dependence of the Internal and Lattice Structures of Skyrmions by Off-Axis Electron Holography. , 2016, Physical review letters.

[9]  H. Berger,et al.  Imaging and manipulation of skyrmion lattice domains in Cu2OSeO3 , 2016, 1611.08168.

[10]  R. Wiesendanger Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics , 2016 .

[11]  R. Stamps,et al.  Internal structure of hexagonal skyrmion lattices in cubic helimagnets , 2016, 1606.04681.

[12]  H. Berger,et al.  Resonant elastic x-ray scattering from the skyrmion lattice in Cu 2 OSeO 3 , 2016, 1606.01194.

[13]  H. Berger,et al.  Multidomain Skyrmion Lattice State in Cu2OSeO3. , 2016, Nano letters.

[14]  Achim Rosch,et al.  Edge instabilities and skyrmion creation in magnetic layers , 2016, 1601.06922.

[15]  S. Blügel,et al.  New spiral state and skyrmion lattice in 3D model of chiral magnets , 2016, 1601.05752.

[16]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[17]  K. Harada,et al.  Chiral Surface Twists and Skyrmion Stability in Nanolayers of Cubic Helimagnets. , 2015, Physical review letters.

[18]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[19]  S. Blügel,et al.  New type of stable particlelike states in chiral magnets. , 2015, Physical review letters.

[20]  R. Wiesendanger,et al.  The properties of isolated chiral skyrmions in thin magnetic films , 2015, 1508.02155.

[21]  H. Berger,et al.  Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets. , 2015, Nature materials.

[22]  C. Marrows,et al.  Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlOx trilayer , 2015, Nature Communications.

[23]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[24]  A. I. Figueroa,et al.  X-ray magnetic circular dichroism—A versatile tool to study magnetism , 2014 .

[25]  A. N. Bogdanov,et al.  Surface twist instabilities and skyrmion states in chiral ferromagnets , 2014, 1405.5275.

[26]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[27]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[28]  S. Rohart,et al.  Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction , 2013, 1310.0666.

[29]  A. N. Bogdanov,et al.  Three-dimensional skyrmion states in thin films of cubic helimagnets , 2012, 1212.5970.

[30]  Y. Tokura,et al.  Observation of magnetic excitations of Skyrmion crystal in a helimagnetic insulator Cu2OSeO3. , 2012, Physical review letters.

[31]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[32]  C. Pfleiderer,et al.  Emergent electrodynamics of skyrmions in a chiral magnet , 2012, Nature Physics.

[33]  Y. Tokura,et al.  Skyrmion flow near room temperature in an ultralow current density , 2012, Nature Communications.

[34]  M. Mochizuki Spin-wave modes and their intense excitation effects in Skyrmion crystals. , 2011, Physical review letters.

[35]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[36]  N. Nagaosa,et al.  Dynamics of Skyrmion crystals in metallic thin films. , 2011, Physical review letters.

[37]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[38]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[39]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[40]  P. Böni,et al.  Topological Hall effect in the A phase of MnSi. , 2009, Physical review letters.

[41]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[42]  G. Laan Soft X-ray resonant magnetic scattering of magnetic nanostructures , 2008 .

[43]  A. Hubert,et al.  Thermodynamically stable magnetic vortex states in magnetic crystals , 1994 .

[44]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .