Temperature prediction in domestic refrigerators: Deterministic and stochastic approaches

A simplified steady state heat transfer model was developed for a domestic refrigerator (without a fan). This model considers circular airflow, heat exchange by natural convection between the air and the cold/warm walls and between the air and the load. Radiation between cold/warm walls and load is also taken into account. The model considers the temperature variation related to the height of the refrigerator (top, bottom) and the position (near the cold wall, near the warm wall). Two random parameters were considered: the room and thermostat temperatures. These values were then introduced into the model enabling the calculation of the load and air temperatures. Analysis of the predicted temperatures was undertaken using comparison with survey data; good agreement was obtained for the mean value and the standard deviation. This model could prove to be useful in the development of a risk evaluation tool.

[1]  Reinhard Radermacher,et al.  Domestic refrigerators : recent developments , 1996 .

[2]  F. W. Bakker-Arkema,et al.  Stochastic Modelling of Grain Drying: Part 3. Analysis of Crossflow Drying , 1997 .

[3]  Rinaldo Rinaldi,et al.  Thermodynamic optimal design of heat exchangers for an irreversible refrigerator , 2001 .

[4]  Fengrui Sun,et al.  Heat transfer effect on the specific cooling load of refrigerators , 1996 .

[5]  K. Hollands,et al.  ANALYSIS OF HEAT TRANSFER BY NATURAL CONVECTION (OR FILM CONDENSATION) FOR THREE DIMENSIONAL FLOWS , 1978 .

[6]  David A. McDowell,et al.  The efficiency and consumer operation of domestic refrigerators , 1992 .

[7]  Geoffrey D. O'brien,et al.  Domestic refrigerator air temperatures and the public's awareness of refrigerator use , 1997 .

[8]  S. Amara Ecoulements et transferts thermiques en convection naturelle dans les milieux macro-poreux alimentaires application aux refrigerateurs menagers , 2005 .

[9]  Denis Flick,et al.  PIV measurement of the flow field in a domestic refrigerator model: Comparison with 3D simulations , 2008 .

[10]  F. W. Bakker-Arkema,et al.  Stochastic Modelling of Grain Drying: Part 2. Model Development , 1997 .

[11]  W. Rohsenow,et al.  Handbook of Heat Transfer , 1998 .

[12]  M. Hertog,et al.  The impact of biological variation on postharvest behaviour of Belgian endive: The case of multiple stochastic variables , 2007 .

[13]  F. W. Bakker-Arkema,et al.  Stochastic Modelling of Grain Drying: Part 1. Experimental Investigation , 1997 .

[14]  J. D. Stigter,et al.  A variance propagation algorithm for stochastic heat and mass transfer problems in food processes , 2001 .

[15]  Jacek M. Zurada,et al.  A Neural Network Controller for Optimal Temperature Control of Household Refrigerators , 1998, Intell. Autom. Soft Comput..

[16]  Kevin Cronin,et al.  Monte Carlo modelling of a vegetable tray dryer , 1998 .

[17]  P. Verboven,et al.  Numerical analysis of the propagation of random parameter fluctuations in time and space during thermal food processes , 1998 .

[18]  Pradeep Bansal,et al.  Optimisation of egg-crate type evaporators in domestic refrigerators , 2001 .

[19]  Judith Evans,et al.  The temperature performance of domestic refrigerators , 1992 .

[20]  M. Bogataj,et al.  Stability of perishable goods in cold logistic chains , 2005 .

[21]  Nicola Sacco,et al.  Optimisation of fresh-food supply chains in uncertain environments, Part I: Background and methodology , 2008 .

[22]  M. Loncin Génie industriel alimentaire : aspects fondamentaux , 1976 .

[23]  P. Verboven,et al.  STOCHASTIC PERTURBATION ANALYSIS OF THERMAL FOOD PROCESSES WITH RANDOM FIELD PARAMETERS , 2000 .

[24]  Christopher J Griffith,et al.  Consumer food handling in the home: a review of food safety studies. , 2003, Journal of food protection.

[25]  C. Genigeorgis,et al.  Temperature distribution and prevalence of Listeria spp. in domestic, retail and industrial refrigerators in Greece. , 1997, International journal of food microbiology.

[26]  D.R.G. Hunt,et al.  A national field survey of house temperatures , 1982 .

[27]  Gilbert Saporta,et al.  Probabilités, Analyse des données et statistique , 1991 .

[28]  Cristina Mena,et al.  Incidence of Listeria spp. in domestic refrigerators in Portugal , 2005, Food Control.

[29]  K. Hayakawa,et al.  Statistical Variability of Thermal Process Lethality in Conduction Heating Food—Computerized Simulation , 1988 .

[30]  Denis Flick,et al.  Numerical simulation of air flow and heat transfer in domestic refrigerators , 2007 .

[31]  Martin Stynes,et al.  Process optimization strategies to diminish variability in the quality of discrete packaged foods during thermal processing , 2003 .

[32]  P. Verboven,et al.  Propagation of stochastic temperature fluctuations in refrigerated fruits , 1999 .

[33]  B. Palagos,et al.  Study of domestic refrigerator temperature and analysis of factors affecting temperature: a French survey , 2002 .

[34]  Nicola Sacco,et al.  Optimisation of fresh-food supply chains in uncertain environments, Part II: A case study , 2008 .

[35]  D. Bolton,et al.  The incidence of significant foodborne pathogens in domestic refrigerators , 2007 .

[36]  Mahmoud Hammad,et al.  The application of propane/butane mixture for domestic refrigerators , 1998 .

[37]  Denis Flick,et al.  Heat transfer by natural convection in domestic refrigerators , 2004 .