Theory of soft solid electrolytes: Overall properties of composite electrolytes, effect of deformation and microstructural design for enhanced ionic conductivity

[1]  P. Sharma,et al.  Flexoelectricity in soft elastomers and the molecular mechanisms underpinning the design and emergence of giant flexoelectricity , 2021, Proceedings of the National Academy of Sciences.

[2]  L. Anand,et al.  Coupled electro-chemo-elasticity: Application to modeling the actuation response of ionic polymer–metal composites , 2021, Journal of the Mechanics and Physics of Solids.

[3]  V. Pol,et al.  Room-temperature, high-voltage solid-state lithium battery with composite solid polymer electrolyte with in-situ thermal safety study , 2020 .

[4]  K. Dayal,et al.  Architected elastomer networks for optimal electromechanical response , 2020, 2010.02661.

[5]  Yuhang Hu,et al.  Kinetics of Polyelectrolyte Gels , 2020 .

[6]  K. Dayal,et al.  Statistical mechanical analysis of the electromechanical coupling in an electrically-responsive polymer chain. , 2020, Soft matter.

[7]  Q. Cai,et al.  Progress in electrolytes for beyond-lithium-ion batteries , 2020 .

[8]  M. Armand,et al.  Mobile Ions in Composite Solids. , 2020, Chemical reviews.

[9]  H. Ardebili A Perspective on the Mechanics Issues in Soft Solid Electrolytes and the Development of Next-Generation Batteries , 2020 .

[10]  Rui Zhang,et al.  The Failure of Solid Electrolyte Interphase on Li Metal Anode: Structural Uniformity or Mechanical Strength? , 2020, Advanced Energy Materials.

[11]  P. Sharma,et al.  An Atomistic Perspective on the Effect of Strain Rate and Lithium Fraction on the Mechanical Behavior of Silicon Electrodes , 2020 .

[12]  L. Archer,et al.  Designing solid-state electrolytes for safe, energy-dense batteries , 2020, Nature Reviews Materials.

[13]  Huajian Gao,et al.  Failure progression in the solid electrolyte interphase (SEI) on silicon electrodes , 2020 .

[14]  E. Quartarone,et al.  Review—Emerging Trends in the Design of Electrolytes for Lithium and Post-Lithium Batteries , 2020, Journal of The Electrochemical Society.

[15]  K. Zhao,et al.  Recent advance in understanding the electro-chemo-mechanical behavior of lithium-ion batteries by electron microscopy , 2019, Materials Today Nano.

[16]  R. McMeeking,et al.  A finite strain electro-chemo-mechanical theory for ion transport with application to binary solid electrolytes , 2019, Journal of the Mechanics and Physics of Solids.

[17]  D. Brandell,et al.  Electrochemical-mechanical modeling of solid polymer electrolytes: Impact of mechanical stresses on Li-ion battery performance , 2019, Electrochimica Acta.

[18]  P. Sharma,et al.  Designing soft pyroelectric and electrocaloric materials using electrets. , 2019, Soft matter.

[19]  Zhiping Xu,et al.  Microstructure- and concentration-dependence of lithium diffusion in the silicon anode: Kinetic Monte Carlo simulations and complex network analysis , 2018, Applied Physics Letters.

[20]  H. Ardebili,et al.  Mechanical deformation effects on ion conduction in stretchable polymer electrolytes , 2018, Applied Physics Letters.

[21]  Xian‐Xiang Zeng,et al.  Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries , 2018, Electrochemical Energy Reviews.

[22]  Qi Li,et al.  Recent Progress of the Solid‐State Electrolytes for High‐Energy Metal‐Based Batteries , 2018 .

[23]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[24]  P. Sharma,et al.  Elucidating the atomistic mechanisms underpinning plasticity in Li-Si nanostructures , 2017 .

[25]  Kun Fu,et al.  Protected Lithium‐Metal Anodes in Batteries: From Liquid to Solid , 2017, Advanced materials.

[26]  Dingchang Lin,et al.  Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires , 2017, Nature Energy.

[27]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[28]  Huajian Gao,et al.  Cycling of a Lithium‐Ion Battery with a Silicon Anode Drives Large Mechanical Actuation , 2016, Advanced materials.

[29]  Bruce Dunn,et al.  Multidimensional materials and device architectures for future hybrid energy storage , 2016, Nature Communications.

[30]  W. Hong,et al.  Phase-field model for the two-phase lithiation of silicon , 2016 .

[31]  Noy Cohen,et al.  Electroelasticity of polymer networks , 2016 .

[32]  Noy Cohen,et al.  Electromechanical Interplay in Deformable Dielectric Elastomer Networks. , 2016, Physical review letters.

[33]  Qi Li,et al.  Progress in electrolytes for rechargeable Li-based batteries and beyond , 2016 .

[34]  H. Ardebili,et al.  In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte , 2016, Scientific Reports.

[35]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[36]  P. Sharma,et al.  Atomistic insights into Li-ion diffusion in amorphous silicon , 2015 .

[37]  Maruti Kumar Mudunuru,et al.  Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions , 2015, ArXiv.

[38]  M. Idiart,et al.  A model problem concerning ionic transport in microstructured solid electrolytes , 2015 .

[39]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[40]  Huajian Gao,et al.  Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction , 2015, Nature Communications.

[41]  John A. Rogers,et al.  Mechanics of stretchable batteries and supercapacitors , 2015 .

[42]  Claudio V. Di Leo,et al.  A theory and a simulation capability for the growth of a solid electrolyte interphase layer at an anode particle in a Li-ion battery , 2015 .

[43]  A. Manthiram,et al.  Ambient temperature sodium-sulfur batteries. , 2015, Small.

[44]  Wei Liu,et al.  Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. , 2015, Nano letters.

[45]  Huajian Gao,et al.  Regulated Breathing Effect of Silicon Negative Electrode for Dramatically Enhanced Performance of Li‐Ion Battery , 2015 .

[46]  Poulomi Roy,et al.  Nanostructured anode materials for lithium ion batteries , 2015 .

[47]  H. Ardebili,et al.  Atomistic investigation of the nanoparticle size and shape effects on ionic conductivity of solid polymer electrolytes , 2014 .

[48]  Lallit Anand,et al.  A Cahn–Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: Application to phase-separating Li-ion electrode materials , 2014 .

[49]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[50]  Moran Balaish,et al.  A critical review on lithium-air battery electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[51]  K. Dayal,et al.  Atomistic-to-continuum multiscale modeling with long-range electrostatic interactions in ionic solids , 2013, 1310.2500.

[52]  Michael Pecht,et al.  Lessons Learned from the 787 Dreamliner Issue on Lithium-Ion Battery Reliability , 2013 .

[53]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[54]  H. Ardebili,et al.  Elucidating the mechanisms of ion conductivity enhancement in polymer nanocomposite electrolytes for lithium ion batteries , 2013 .

[55]  Liping Liu On energy formulations of electrostatics for continuum media , 2013 .

[56]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[57]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[58]  D. Schaetzl,et al.  Influence of Fe2O3 Nanofiller Shape on the Conductivity and Thermal Properties of Solid Polymer Electrolytes: Nanorods versus Nanospheres , 2012 .

[59]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[60]  Hun‐Gi Jung,et al.  An improved high-performance lithium-air battery. , 2012, Nature chemistry.

[61]  P. Ajayan,et al.  High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. , 2012, Nano letters.

[62]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[63]  Q. Ma,et al.  Control of the aggregation behavior of silver nanoparticles in polyurethane matrix , 2011 .

[64]  M. Johan,et al.  Effects of Al2O3 nanofiller and EC plasticizer on the ionic conductivity enhancement of solid PEO-LiCF3SO3 solid polymer electrolyte , 2011 .

[65]  V Srinivasan,et al.  Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. , 2011, Physical review letters.

[66]  Zhigang Suo,et al.  Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge , 2011 .

[67]  Guo-Wei Wei,et al.  Poisson-Boltzmann-Nernst-Planck model. , 2011, The Journal of chemical physics.

[68]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[69]  A. Bower,et al.  A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell , 2011, 1107.6020.

[70]  W. Hong,et al.  Theory of ionic polymer conductor network composite , 2011 .

[71]  L. Liu Hashin–Shtrikman bounds and their attainability for multi-phase composites , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[72]  Lallit Anand,et al.  A coupled theory of fluid permeation and large deformations for elastomeric materials , 2010 .

[73]  Zhigang Suo,et al.  Fracture of electrodes in lithium-ion batteries caused by fast charging , 2010 .

[74]  V. Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[75]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[76]  Zhigang Suo,et al.  Large deformation and electrochemistry of polyelectrolyte gels , 2010 .

[77]  Janna K. Maranas,et al.  Effect of LiClO4 on the Structure and Mobility of PEO-Based Solid Polymer Electrolytes , 2009 .

[78]  K. Bhattacharya,et al.  A Continuum Theory of Deformable, Semiconducting Ferroelectrics , 2008 .

[79]  W. Wieczorek,et al.  Mesoscale models of conductivity in polymeric electrolytes : A comparative study , 2007 .

[80]  Zhangxin Chen,et al.  Critical review of the impact of tortuosity on diffusion , 2007 .

[81]  M. Dissanayake,et al.  Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf , 2007 .

[82]  S. Tarafdar,et al.  Ion-conductivity and Young's modulus of the polymer electrolyte PEO–ammonium perchlorate , 2007 .

[83]  Yi Pan,et al.  Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes , 2006 .

[84]  J. Oberdisse Aggregation of colloidal nanoparticles in polymer matrices. , 2005, Soft matter.

[85]  Diana Golodnitsky,et al.  Highly conductive oriented PEO‐based polymer electrolytes , 2003 .

[86]  Graeme W. Milton,et al.  Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics , 2003 .

[87]  Peng Wang,et al.  High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. , 2002, Chemical communications.

[88]  G. Milton The Theory of Composites , 2002 .

[89]  Pier Paolo Prosini,et al.  Determination of the chemical diffusion coefficient of lithium in LiFePO4 , 2002 .

[90]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[91]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[92]  Yasuhiko Ito,et al.  Non-conventional electrolytes for electrochemical applications , 2000 .

[93]  E. Peled,et al.  Stretching-induced conductivity enhancement of LiI(PEO)-polymer electrolyte , 2000 .

[94]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[95]  Peter G. Bruce,et al.  Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6 , 1999, Nature.

[96]  F. M. Gray Solid Polymer Electrolytes: Fundamentals and Technological Applications , 1991 .

[97]  F. C. Larcht'e,et al.  The effect of self-stress on diffusion in solids , 1982 .

[98]  B. Steele,et al.  Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes , 1982 .

[99]  E. Tsuchida,et al.  High lithium ionic conductivity of polymeric solid electrolytes , 1981 .

[100]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .

[101]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[102]  S. Shtrikman,et al.  On some variational principles in anisotropic and nonhomogeneous elasticity , 1962 .

[103]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[104]  Huajian Gao,et al.  Stress evolution in lithium metal electrodes , 2020 .

[105]  Huajian Gao,et al.  Pop-Up Delamination of Electrodes in Solid-State Batteries , 2018 .

[106]  Z. Suo,et al.  Hydrogel ionotronics , 2018, Nature Reviews Materials.

[107]  Zhigang Suo,et al.  Ionic skin , 2014, Advanced materials.

[108]  G. Wypych 2 – MATERIAL COMPOSITION, STRUCTURE AND MORPHOLOGICAL FEATURES , 2012 .

[109]  S. Ibrahim,et al.  Effects of Al 2 O 3 nano fi ller and EC plasticizer on the ionic conductivity enhancement of solid PEO – LiCF 3 SO 3 solid polymer electrolyte , 2011 .

[110]  R. Mittra,et al.  Broadband Dielectric Characterization of Aluminum Oxide (Al2O3) , 2008 .

[111]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[112]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[113]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[114]  Shinzo Kohjiya,et al.  Solid State Ionics for Batteries , 2005 .

[115]  John A. Hudson,et al.  Comprehensive rock engineering : principles, practice, and projects , 1993 .

[116]  D. D. Eley Solid state electrochemistry , 1974, Nature.

[117]  J. Swinburne Electromagnetic Theory , 1894, Nature.