The beta Liu-type estimator: simulation and application

The Beta Regression Model (BRM) is commonly used when analyzing data in which the dependent variable is restricted to the interval [0,1] for example proportion or probability. The Maximum Likelihood Estimator (MLE) is used to estimate the regression coefficients of BRMs. But in the presence of multicollinearity, MLE is very sensitive to high correlation among the explanatory variables. For this reason, we introduce a new biased estimator called the Beta Liu-Type Estimator (BLTE) to overcome the multicollinearity problem in which the dependent variable has Beta distribution. The proposed estimator is a general estimator which includes other biased estimators, such as the Ridge Estimator, Liu Estimator, and the estimators with two biasing parameters as special cases in BRM. The performance of the proposed new estimator is compared to the MLE and other biased estimators depending on the Estimated Mean Squared Error (EMSE) criterion by conducting a simulation study. Finally, a numerical example is given to show the benefit of the proposed estimator over existing estimators.

[1]  A. Lukman,et al.  Dawoud–Kibria Estimator for Beta Regression Model: Simulation and Application , 2022, Frontiers in Applied Mathematics and Statistics.

[2]  Ibrahim M. Taha,et al.  A New Two-Parameter Estimator for Beta Regression Model: Method, Simulation, and Application , 2022, Frontiers in Applied Mathematics and Statistics.

[3]  Z. Algamal,et al.  Developing a Liu‐type estimator in beta regression model , 2021, Concurr. Comput. Pract. Exp..

[4]  Mohamed R. Abonazel,et al.  Beta ridge regression estimators: simulation and application , 2021, Commun. Stat. Simul. Comput..

[5]  Hamid Bidram,et al.  On the Liu estimator in the beta and Kumaraswamy regression models: A comparative study , 2021, Communications in Statistics - Theory and Methods.

[6]  Kristofer Månsson,et al.  On some beta ridge regression estimators: method, simulation and application , 2021 .

[7]  B. M. Kibria,et al.  A New Biased Estimator to Combat the Multicollinearity of the Gaussian Linear Regression Model , 2020, Stats.

[8]  K. Akay,et al.  A new Liu-type estimator in binary logistic regression models , 2020, Communications in Statistics - Theory and Methods.

[9]  K. Månsson,et al.  A Liu estimator for the beta regression model and its application to chemical data , 2020 .

[10]  Muhammad Amin,et al.  Performance of some new Liu parameters for the linear regression model , 2020, Communications in Statistics - Theory and Methods.

[11]  B. M. Kibria,et al.  Estimating the Unrestricted and Restricted Liu Estimators for the Poisson Regression Model: Method and Application , 2020, Computational Economics.

[12]  Z. Algamal,et al.  A New Ridge Estimator for the Poisson Regression Model , 2019, Iranian Journal of Science and Technology, Transactions A: Science.

[13]  Z. Algamal Performance of ridge estimator in inverse Gaussian regression model , 2019 .

[14]  Raydonal Ospina,et al.  Model Selection Criteria on Beta Regression for Machine Learning , 2019, Mach. Learn. Knowl. Extr..

[15]  Zakariya Yahya Algamal,et al.  Liu-type estimator for the gamma regression model , 2018, Commun. Stat. Simul. Comput..

[16]  Z. Algamal,et al.  Proposed methods in estimating the ridge regression parameter in Poisson regression model , 2018 .

[17]  G. Shukur,et al.  Some Liu Type Estimators for the dynamic OLS estimator: With an application to the carbon dioxide Kuznets curve for Turkey , 2017 .

[18]  Alisson de Oliveira Silva,et al.  Prediction Measures in Beta Regression Models , 2015, 1501.04830.

[19]  Z. Algamal Diagnostic in Poisson Regression Models , 2012 .

[20]  B. M. Golam Kibria,et al.  Some Liu and ridge-type estimators and their properties under the ill-conditioned Gaussian linear regression model , 2012 .

[21]  S. Ferrari,et al.  On beta regression residuals , 2008 .

[22]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .

[23]  Kejian Liu Using Liu-Type Estimator to Combat Collinearity , 2003 .

[24]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[25]  M. Ullah,et al.  A new modified ridge-type estimator for the beta regression model: simulation and application , 2021, AIMS Mathematics.

[26]  Liu Kejian,et al.  A new class of blased estimate in linear regression , 1993 .