Bioglasses for Bone Tissue Engineering

[1]  Edgar Dutra Zanotto,et al.  Biosilicate® scaffolds produced by 3D-printing and direct foaming using preceramic polymers , 2018, Journal of the American Ceramic Society.

[2]  Nicholas A. Chartrain,et al.  A review on fabricating tissue scaffolds using vat photopolymerization. , 2018, Acta biomaterialia.

[3]  Boonlom Thavornyutikarn,et al.  Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds. , 2017, Materials science & engineering. C, Materials for biological applications.

[4]  Livia Visai,et al.  POLITECNICO DI TORINO Repository ISTITUZIONALE Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration / , 2022 .

[5]  P. Bártolo,et al.  Advances in electrospun skin substitutes , 2016 .

[6]  P. Bártolo,et al.  Traditional Therapies for Skin Wound Healing. , 2016, Advances in wound care.

[7]  Jonathan C. Knowles,et al.  Sol-gel based materials for biomedical applications , 2016 .

[8]  Changsheng Liu,et al.  Biomimetic porous scaffolds for bone tissue engineering , 2014 .

[9]  L. Hench Chronology of Bioactive Glass Development and Clinical Applications , 2013 .

[10]  Jukka Seppälä,et al.  Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly(ε-caprolactone) by stereolithography , 2013 .

[11]  P. Greil,et al.  Sintering of 3D‐Printed Glass/HAp Composites , 2012 .

[12]  S. Bose,et al.  Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. , 2012, Acta biomaterialia.

[13]  M. Cerruti Surface characterization of silicate bioceramics , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  David B. Henthorn,et al.  Materials in biology and medicine , 2012 .

[15]  Jeffrey O. Hollinger,et al.  An introduction to biomaterials , 2011 .

[16]  Ming-Chuan Leu,et al.  Porous and strong bioactive glass (13–93) scaffolds fabricated by freeze extrusion technique , 2011 .

[17]  Eduardo Saiz,et al.  Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. , 2011, Materials science & engineering. C, Materials for biological applications.

[18]  Delbert E. Day,et al.  Freeze extrusion fabrication of 13–93 bioactive glass scaffolds for bone repair , 2011, Journal of materials science. Materials in medicine.

[19]  J. Glowacki,et al.  Biologic Foundations for Skeletal Tissue Engineering , 2011 .

[20]  Christian Bergmann,et al.  3D printing of bone substitute implants using calcium phosphate and bioactive glasses , 2010 .

[21]  María Vallet-Regí,et al.  Sol-gel silica-based biomaterials and bone tissue regeneration. , 2010, Acta biomaterialia.

[22]  Aldo R. Boccaccini,et al.  Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering , 2010, Materials.

[23]  M J Gómez-Benito,et al.  Influence of the frequency of the external mechanical stimulus on bone healing: a computational study. , 2010, Medical engineering & physics.

[24]  G. Jabbour,et al.  Inkjet Printing—Process and Its Applications , 2010, Advanced materials.

[25]  P. Tran,et al.  Opportunities for nanotechnology-enabled bioactive bone implants , 2009 .

[26]  J. Suwanprateeb,et al.  Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing , 2009, Journal of materials science. Materials in medicine.

[27]  Aldo R Boccaccini,et al.  Permeability evaluation of 45S5 Bioglass-based scaffolds for bone tissue engineering. , 2009, Journal of biomechanics.

[28]  Julia M. Polak,et al.  Advances in Tissue Engineering , 2008 .

[29]  Julian R. Jones,et al.  Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. , 2007, Biomaterials.

[30]  Julian R. Jones,et al.  Controlling ion release from bioactive glass foam scaffolds with antibacterial properties , 2006, Journal of materials science. Materials in medicine.

[31]  María Vallet-Regí,et al.  From the bioactive glasses to the star gels , 2006, Journal of materials science. Materials in medicine.

[32]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[33]  Aldo R Boccaccini,et al.  45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. , 2006, Biomaterials.

[34]  Julian R Jones,et al.  Optimising bioactive glass scaffolds for bone tissue engineering. , 2006, Biomaterials.

[35]  D. Kaplan,et al.  Porosity of 3D biomaterial scaffolds and osteogenesis. , 2005, Biomaterials.

[36]  J. Shea,et al.  Skeletal function and structure: implications for tissue-targeted therapeutics. , 2005, Advanced drug delivery reviews.

[37]  S. Spriano,et al.  Silver containing bioactive glasses prepared by molten salt ion-exchange , 2004 .

[38]  A. Berdal,et al.  Potential of biomimetic surfaces to promote in vitro osteoblast-like cell differentiation. , 2004, Biomaterials.

[39]  Marjolein C H van der Meulen,et al.  Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. , 2003, Journal of biomechanics.

[40]  Uwe Thiele,et al.  Wetting of textured surfaces , 2002 .

[41]  Larry L Hench,et al.  Third-Generation Biomedical Materials , 2002, Science.

[42]  K. Leong,et al.  The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. , 2002, Tissue engineering.

[43]  C. Rubin,et al.  Biology of bone and how it orchestrates the form and function of the skeleton , 2001, European Spine Journal.

[44]  T. Albrektsson,et al.  Osteoinduction, osteoconduction and osseointegration , 2001, European Spine Journal.

[45]  L. Hench,et al.  Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system. , 2001, Journal of biomedical materials research.

[46]  Larry L. Hench,et al.  Bioglass ®45S5 Stimulates Osteoblast Turnover and Enhances Bone Formation In Vitro: Implications and Applications for Bone Tissue Engineering , 2000, Calcified Tissue International.

[47]  J. Polak,et al.  Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. , 2000, Biochemical and biophysical research communications.

[48]  M. Vallet‐Regí,et al.  Bioactivity of a CaO−SiO2 Binary Glasses System , 2000 .

[49]  W. Bonfield,et al.  Preparation and Characterisation of Hydroxyapatite and Carbonate Substituted Hydroxyapatite Granules , 2000 .

[50]  D Kaspar,et al.  Effects of Mechanical Factors on the Fracture Healing Process , 1998, Clinical orthopaedics and related research.

[51]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[52]  L. Hench,et al.  Bioactive Ceramics , 1988, Annals of the New York Academy of Sciences.

[53]  A. Boccaccini,et al.  Stereolithographic Ceramic Manufacturing of High Strength Bioactive Glass , 2015 .

[54]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[55]  M. Zilberman Active implants and scaffolds for tissue regeneration , 2011 .

[56]  Serena M. Best,et al.  Bioceramics: Past, present and for the future , 2008 .

[57]  María Vallet-Regí,et al.  Ceramics for medical applications , 2001 .