Treatment effect estimation with covariate measurement error

This paper investigates the effect that covariate measurement error has on a treatment effect analysis built on an unconfoundedness restriction in which there is conditioning on error free covariates. The approach uses small parameter asymptotic methods to obtain the approximate effects of measurement error for estimators of average treatment effects. The approximations can be estimated using data on observed outcomes, the treatment indicator and error contaminated covariates without employing additional information from validation data or instrumental variables. The results can be used in a sensitivity analysis to probe the potential effects of measurement error on the evaluation of treatment effects.

[1]  J. Heckman,et al.  The Economics and Econometrics of Active Labor Market Programs , 1999 .

[2]  Francesca Molinari Partial identification of probability distributions with misclassified data , 2008 .

[3]  Raymond J. Carroll,et al.  Measurement error in nonlinear models: a modern perspective , 2006 .

[4]  E. Tamer,et al.  A simple estimator for nonlinear error in variable models , 2003 .

[5]  Jerry A. Hausman,et al.  Nonlinear errors in variables Estimation of some Engel curves , 1995 .

[6]  D. Rubin Estimating causal effects of treatments in randomized and nonrandomized studies. , 1974 .

[7]  Arthur Lewbel,et al.  Estimation of Average Treatment Effects With Misclassification , 2007 .

[8]  Yingyao Hu,et al.  Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution , 2008 .

[9]  James J. Heckman,et al.  Characterizing Selection Bias Using Experimental Data , 1998 .

[10]  R. Blundell,et al.  Evaluating the effect of education on earnings: models, methods and results from the National Child Development Survey , 2005 .

[11]  G. W. Imbens Sensitivity to Exogeneity Assumptions in Program Evaluation , 2003 .

[12]  Tong Li,et al.  Robust and consistent estimation of nonlinear errors-in-variables models , 2002 .

[13]  John Bound,et al.  Measurement error in survey data , 2001 .

[14]  B. Sianesi,et al.  Misreported schooling and returns to education: evidence from the UK , 2006 .

[15]  Andrew Chesher,et al.  Testing for Neglected Heterogeneity , 1984 .

[16]  A. Chesher,et al.  Duration response measurement error , 2002 .

[17]  G. Imbens,et al.  Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score , 2000 .

[18]  A. Chesher The effect of measurement error , 1991 .

[19]  A. Troxel,et al.  AN INDEX OF LOCAL SENSITIVITY TO NONIGNORABILITY , 2004 .

[20]  A. Chesher,et al.  Welfare Measurement and Measurement Error , 2001 .

[21]  Han Hong,et al.  Nonlinear Models of Measurement Errors , 2011 .

[22]  W. G. Cochran,et al.  Controlling Bias in Observational Studies: A Review. , 1974 .

[23]  J M Robins,et al.  Identifiability, exchangeability, and epidemiological confounding. , 1986, International journal of epidemiology.

[24]  Aprajit Mahajan,et al.  Identification and Estimation of Regression Models with Misclassification , 2005 .

[25]  Susanne M. Schennach,et al.  Estimation of Nonlinear Models with Measurement Error , 2004 .

[26]  Els Goetghebeur,et al.  Comparison of causal effect estimators under exposure misclassification , 2010 .

[27]  James J. Heckman,et al.  Characterizing Selection Bias Using Experimental Data , 1998 .

[28]  D. Rubin,et al.  Assessing Sensitivity to an Unobserved Binary Covariate in an Observational Study with Binary Outcome , 1983 .

[29]  V. Joseph Hotz,et al.  Bounding Causal Effects Using Data from a Contaminated Natural Experiment: Analysing the Effects of Teenage Childbearing , 1997 .

[30]  Christopher R. Taber,et al.  Using Selection on Observed Variables to Assess Bias from Unobservables When Evaluating Swan-Ganz Catheterization , 2008 .

[31]  Andrew W. Roddam,et al.  Measurement Error in Nonlinear Models: a Modern Perspective , 2008 .

[32]  D. Horvitz,et al.  A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .

[33]  Susanne M. Schennach,et al.  Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models , 2004 .

[34]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[35]  M. Lechner Identification and Estimation of Causal Effects of Multiple Treatments Under the Conditional Independence Assumption , 1999, SSRN Electronic Journal.

[36]  P. Rosenbaum Model-Based Direct Adjustment , 1987 .

[37]  R. Rohh ALTERNATIVE METHODS FOR EVALUATING THE IMPACT OF INTERVENTIONS An Overview , 2001 .

[38]  Patrick M. Kline,et al.  Sensitivity to Missing Data Assumptions: Theory and an Evaluation of the U.S. Wage Structure , 2010 .

[39]  J. Robins Estimation of the time-dependent accelerated failure time model in the presence of confounding factors , 1992 .

[40]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[41]  G. Imbens Semiparametric Estimation of Average Treatment Eects under Exogeneity: A Review , 2003 .

[42]  Andrew Chesher,et al.  Taste variation in discrete choice models , 2002 .

[43]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[44]  J. Heckman,et al.  Longitudinal Analysis of Labor Market Data: Alternative methods for evaluating the impact of interventions , 1985 .

[45]  Andrew Chesher,et al.  Measurement Error Bias Reduction , 1998 .