Morphometrical data analysis using wavelets

In this paper, we present a new shape analysis approach using the well-known wavelet transform and exploring shape representation by landmarks. First, we describe the approach adopted to represent the landmarks data as parametric signals. Then, we show the relation of the derivatives of Gaussian wavelet transform applied to the signal-to-differential properties of the shape that it represents. We present experimental results using real data to show how it is possible to characterize shapes through multiscale and differential signal-processing techniques in order to relate morphological variables with phylogenetic signal, environmental factors and sexual dimorphism. The goal of this research is to develop an effective wavelet transform-based method to represent and classify multiple classes of shapes given by landmarks.

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  O. Rioul,et al.  Wavelets and signal processing , 1991, IEEE Signal Processing Magazine.

[3]  E. Martins The Comparative Method in Evolutionary Biology, Paul H. Harvey, Mark D. Pagel. Oxford University Press, Oxford (1991), vii, + 239 Price $24.95 paperback , 1992 .

[4]  P. Rocha Proechimys yonenagae, a new species of spiny rat (Rodentia: Echimyidae) from fossil sand dunes in the Brazilian Caatinga , 1995 .

[5]  F. von Zuben,et al.  GEOGRAPHIC VARIATION IN CRANIAL MORPHOLOGY IN THRICHOMYS APEREOIDES (RODENTIA: ECHIMYIDAE). I. GEOMETRIC DESCRIPTORS AND PATTERNS OF VARIATION IN SHAPE , 2002 .

[6]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .

[7]  M. Hazewinkel,et al.  Stochastic Processes in Physics and Engineering , 2011 .

[8]  Fred L. Bookstein,et al.  Morphometrics in Evolutionary Biology , 1988 .

[9]  Luciano da Fontoura Costa,et al.  Shape Analysis and Classification: Theory and Practice , 2000 .

[10]  Sérgio F. dos Reis,et al.  GEOMETRIC ESTIMATES OF HERITABILITY IN BIOLOGICAL SHAPE , 2002, Evolution; international journal of organic evolution.

[11]  Hong-Ye Gao,et al.  Wavelet analysis [for signal processing] , 1996 .

[12]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[13]  Roberto Marcondes Cesar Junior,et al.  Shape Analysis and Classification using Landmarks: Polygonal Wavelet Transform , 2002, ECAI.

[14]  F. von Zuben,et al.  GEOGRAPHIC VARIATION IN CRANIAL MORPHOLOGY IN THRICHOMYS APEREOIDES (RODENTIA: ECHIMYIDAE). II. GEOGRAPHIC UNITS, MORPHOLOGICAL DISCONTINUITIES, AND SAMPLING GAPS , 2002 .

[15]  Jean-Pierre Antoine Wavelet analysis: A new tool in signal processing , 1994 .

[16]  F. von Zuben,et al.  Variation in mandible shape in Thrichomys apereoides (Mammalia: Rodentia): geometric analysis of a complex morphological structure. , 2000, Systematic biology.

[17]  S. F. Reis,et al.  SKULL SHAPE AND SIZE DIVERGENCE IN DOLPHINS OF THE GENUS SOTALIA: A TRIDIMENSIONAL MORPHOMETRIC ANALYSIS , 2002 .

[18]  F. Bookstein,et al.  Proceedings of the Michigan Morphometrics Workshop , 1992 .

[19]  F. Bookstein,et al.  Morphometrics in Evolutionary Biology. , 1986 .

[20]  Roberto M. Cesar,et al.  A Fourier-wavelet representation of 2-D shapes : sexual dimorphism in the Japanese cranial base , 2004 .

[21]  M. Wright Real Time Imaging , 2005 .

[22]  Martins,et al.  Adaptation and the comparative method. , 2000, Trends in ecology & evolution.

[23]  Jean-Pierre Antoine,et al.  Shape characterization with the wavelet transform , 1997, Signal Process..

[24]  A. Grossmann,et al.  Wavelet Transforms and Edge Detection , 1988 .

[25]  E. J. Nolan ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA , 1899 .