Knotted solitons in nonlinear magnetic metamaterials.

We demonstrate that nonlinear magnetic metamaterials comprised of a lattice of weakly coupled split-ring resonators driven by an external electromagnetic field may support entirely new classes of spatially localized modes--knotted solitons, which are stable self-localized dissipative structures in the form of closed knotted chains. We demonstrate different topological types of stable knots for the subcritical coupling between resonators and instability-induced breaking of the chains for the supercritical coupling.