Nanorod‐Based Dye‐Sensitized Solar Cells with Improved Charge Collection Efficiency

[1]  Y. Sung,et al.  Surface Modification of Stretched TiO2 Nanotubes for Solid-State Dye-Sensitized Solar Cells , 2007 .

[2]  Moon-Sung Kang,et al.  Effects of a surfactant-templated nanoporous TiO2 interlayer on dye-sensitized solar cells , 2007 .

[3]  Moon-Sung Kang,et al.  Enhanced electron diffusion length of mesoporous TiO2 film by using Nb2O5 energy barrier for dye-sensitized solar cells , 2006 .

[4]  Fumin Wang,et al.  Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. , 2006, The journal of physical chemistry. B.

[5]  Y. Wada,et al.  Stepped light-induced transient measurements of photocurrent and voltage in dye-sensitized solar cells: application for highly viscous electrolyte systems. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[6]  T. Hyeon,et al.  Low-temperature synthesis of highly crystalline TiO2 nanocrystals and their application to photocatalysis. , 2005, Small.

[7]  R. Schlögl,et al.  Ligand functionality as a versatile tool to control the assembly behavior of preformed titania nanocrystals. , 2005, Chemistry.

[8]  A. Walker,et al.  Grain morphology and trapping effects on electron transport in dye-sensitized nanocrystalline solar cells. , 2005, The journal of physical chemistry. B.

[9]  Fumin Wang,et al.  Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. , 2004, Journal of the American Chemical Society.

[10]  Nicholas J Long,et al.  Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: free energy vs distance dependence. , 2004, Journal of the American Chemical Society.

[11]  J. Cheon,et al.  Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. , 2003, Journal of the American Chemical Society.

[12]  P. Cozzoli,et al.  Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. , 2003, Journal of the American Chemical Society.

[13]  A. J. Frank,et al.  Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2003 .

[14]  Kurt D. Benkstein,et al.  Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells , 2003 .

[15]  Juan Bisquert,et al.  Analysis of the Mechanisms of Electron Recombination in Nanoporous TiO2 Dye-Sensitized Solar Cells. Nonequilibrium Steady-State Statistics and Interfacial Electron Transfer via Surface States , 2002 .

[16]  Kurt D. Benkstein,et al.  Relation between Particle Coordination Number and Porosity in Nanoparticle Films: Implications to Dye-Sensitized Solar Cells , 2001 .

[17]  Arthur J. Frank,et al.  Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and Random-Walk Modeling Studies , 2001 .

[18]  Young‐Chang Joo,et al.  Tertiary grain growth driven by surface energy , 2001 .

[19]  H. Ozaki,et al.  Computer Simulations of Charge Transport in Dye-Sensitized Nanocrystalline Photovoltaic Cells , 2001 .

[20]  Adrian C. Fisher,et al.  Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2000 .

[21]  Jenny Nelson,et al.  Continuous-time random-walk model of electron transport in nanocrystalline TiO 2 electrodes , 1999 .

[22]  Jillian F. Banfield,et al.  Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania , 1999 .

[23]  A. Hagfeldt,et al.  Charge transport properties in dye-sensitized nanostructured TiO2 thin film electrodes studied by photoinduced current transients , 1999 .

[24]  T. C. McGill,et al.  Electron diffusion length and lifetime in p-type GaN , 1998 .

[25]  D. Fitzmaurice,et al.  Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film , 1996 .

[26]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[27]  J. Fraser Stoddart,et al.  Inside Cover: A Molecular Solomon Link (Angew. Chem. Int. Ed. 1‐2/2007) , 2007 .