Frequent pattern mining: current status and future directions

Frequent pattern mining has been a focused theme in data mining research for over a decade. Abundant literature has been dedicated to this research and tremendous progress has been made, ranging from efficient and scalable algorithms for frequent itemset mining in transaction databases to numerous research frontiers, such as sequential pattern mining, structured pattern mining, correlation mining, associative classification, and frequent pattern-based clustering, as well as their broad applications. In this article, we provide a brief overview of the current status of frequent pattern mining and discuss a few promising research directions. We believe that frequent pattern mining research has substantially broadened the scope of data analysis and will have deep impact on data mining methodologies and applications in the long run. However, there are still some challenging research issues that need to be solved before frequent pattern mining can claim a cornerstone approach in data mining applications.

[1]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[2]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[3]  R. Agarwal Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[4]  Lawrence B. Holder,et al.  Substucture Discovery in the SUBDUE System , 1994, KDD Workshop.

[5]  Heikki Mannila,et al.  Efficient Algorithms for Discovering Association Rules , 1994, KDD Workshop.

[6]  Shamkant B. Navathe,et al.  An Efficient Algorithm for Mining Association Rules in Large Databases , 1995, VLDB.

[7]  Philip S. Yu,et al.  An effective hash-based algorithm for mining association rules , 1995, SIGMOD '95.

[8]  Heikki Mannila,et al.  A Perspective on Databases and Data Mining , 1995, KDD.

[9]  Jiawei Han,et al.  Discovery of Multiple-Level Association Rules from Large Databases , 1995, VLDB.

[10]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[11]  Philip S. Yu,et al.  Efficient parallel data mining for association rules , 1995, CIKM '95.

[12]  Jiawei Han,et al.  Discovery of Spatial Association Rules in Geographic Information Databases , 1995, SSD.

[13]  Jiawei Han,et al.  Maintenance of discovered association rules in large databases: an incremental updating technique , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[14]  Yasuhiko Morimoto,et al.  Data mining using two-dimensional optimized association rules: scheme, algorithms, and visualization , 1996, SIGMOD '96.

[15]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules and sequential patterns , 1996 .

[16]  Ramakrishnan Srikant,et al.  Mining Sequential Patterns: Generalizations and Performance Improvements , 1996, EDBT.

[17]  Jiawei Han,et al.  A fast distributed algorithm for mining association rules , 1996, Fourth International Conference on Parallel and Distributed Information Systems.

[18]  Rakesh Agrawal,et al.  Parallel Mining of Association Rules , 1996, IEEE Trans. Knowl. Data Eng..

[19]  Hannu Toivonen,et al.  Sampling Large Databases for Association Rules , 1996, VLDB.

[20]  Philip S. Yu,et al.  Data mining for path traversal patterns in a web environment , 1996, Proceedings of 16th International Conference on Distributed Computing Systems.

[21]  Jennifer Widom,et al.  Clustering association rules , 1997, Proceedings 13th International Conference on Data Engineering.

[22]  Rajeev Motwani,et al.  Dynamic itemset counting and implication rules for market basket data , 1997, SIGMOD '97.

[23]  Jiawei Han,et al.  Metarule-Guided Mining of Multi-Dimensional Association Rules Using Data Cubes , 1997, KDD.

[24]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..

[25]  Rajeev Motwani,et al.  Beyond market baskets: generalizing association rules to correlations , 1997, SIGMOD '97.

[26]  Renée J. Miller,et al.  Association rules over interval data , 1997, SIGMOD '97.

[27]  Yasuhiko Morimoto,et al.  Computing Optimized Rectilinear Regions for Association Rules , 1997, KDD.

[28]  Hannu Toivonen,et al.  Finding Frequent Substructures in Chemical Compounds , 1998, KDD.

[29]  Laks V. S. Lakshmanan,et al.  Exploratory mining and pruning optimizations of constrained associations rules , 1998, SIGMOD '98.

[30]  Philip S. Yu,et al.  A new framework for itemset generation , 1998, PODS '98.

[31]  Wynne Hsu,et al.  Integrating Classification and Association Rule Mining , 1998, KDD.

[32]  Sushil Jajodia,et al.  Mining Temporal Relationships with Multiple Granularities in Time Sequences , 1998, IEEE Data Eng. Bull..

[33]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[34]  Sridhar Ramaswamy,et al.  Cyclic association rules , 1998, Proceedings 14th International Conference on Data Engineering.

[35]  Mohammed J. Zaki,et al.  PlanMine: Sequence Mining for Plan Failures , 1998, KDD.

[36]  Roberto J. Bayardo,et al.  Efficiently mining long patterns from databases , 1998, SIGMOD '98.

[37]  Mohammed J. Zaki Efficient enumeration of frequent sequences , 1998, CIKM '98.

[38]  Jinyan Li,et al.  Efficient mining of emerging patterns: discovering trends and differences , 1999, KDD '99.

[39]  Jiawei Han,et al.  Efficient mining of partial periodic patterns in time series database , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[40]  Laks V. S. Lakshmanan,et al.  Optimization of constrained frequent set queries with 2-variable constraints , 1999, SIGMOD '99.

[41]  Raghu Ramakrishnan,et al.  Bottom-up computation of sparse and Iceberg CUBE , 1999, SIGMOD '99.

[42]  Kyuseok Shim,et al.  SPIRIT: Sequential Pattern Mining with Regular Expression Constraints , 1999, VLDB.

[43]  Yi Zhang,et al.  Entropy-based subspace clustering for mining numerical data , 1999, KDD '99.

[44]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[45]  Rakesh Agrawal,et al.  Parallel Mining of Association Rules: Design, Implementation and Experience , 1999 .

[46]  R. Ramakrishnan,et al.  Bottom-Up Computation of Sparse and Iceberg CUBEs , 1999, SIGMOD Conference.

[47]  Yehuda Lindell,et al.  A Statistical Theory for Quantitative Association Rules , 1999, KDD '99.

[48]  Mohammed J. Zaki Scalable Algorithms for Association Mining , 2000, IEEE Trans. Knowl. Data Eng..

[49]  Jian Pei,et al.  Mining Access Patterns Efficiently from Web Logs , 2000, PAKDD.

[50]  Philip S. Yu,et al.  Mining asynchronous periodic patterns in time series data , 2000, KDD '00.

[51]  Jaideep Srivastava,et al.  Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.

[52]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[53]  Laks V. S. Lakshmanan,et al.  Efficient mining of constrained correlated sets , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[54]  Jiawei Han,et al.  Mining recurrent items in multimedia with progressive resolution refinement , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[55]  Jian Pei,et al.  CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets , 2000, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[56]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[57]  Takashi Washio,et al.  An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data , 2000, PKDD.

[58]  Hendrik Blockeel,et al.  Web mining research: a survey , 2000, SKDD.

[59]  Nagwa M. El-Makky,et al.  A note on "beyond market baskets: generalizing association rules to correlations" , 2000, SKDD.

[60]  Johannes Gehrke,et al.  MAFIA: a maximal frequent itemset algorithm for transactional databases , 2001, Proceedings 17th International Conference on Data Engineering.

[61]  Charu C. Aggarwal,et al.  A Tree Projection Algorithm for Generation of Frequent Item Sets , 2001, J. Parallel Distributed Comput..

[62]  Jian Pei,et al.  CMAR: accurate and efficient classification based on multiple class-association rules , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[63]  Kotagiri Ramamohanarao,et al.  Making Use of the Most Expressive Jumping Emerging Patterns for Classification , 2001, Knowledge and Information Systems.

[64]  Jian Pei,et al.  Efficient computation of Iceberg cubes with complex measures , 2001, SIGMOD '01.

[65]  Joseph L. Hellerstein,et al.  Mining partially periodic event patterns with unknown periods , 2001, Proceedings 17th International Conference on Data Engineering.

[66]  George Karypis,et al.  Frequent subgraph discovery , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[67]  Yannis Manolopoulos,et al.  Mining patterns from graph traversals , 2001, Data Knowl. Eng..

[68]  Howard J. Hamilton,et al.  Knowledge discovery and measures of interest , 2001 .

[69]  Simon Fraser MULTI-DIMENSIONAL SEQUENTIAL PATTERN MINING , 2001 .

[70]  Bart Goethals,et al.  A tight upper bound on the number of candidate patterns , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[71]  Cheng Yang,et al.  Efficient discovery of error-tolerant frequent itemsets in high dimensions , 2001, KDD '01.

[72]  Qiming Chen,et al.  PrefixSpan,: mining sequential patterns efficiently by prefix-projected pattern growth , 2001, Proceedings 17th International Conference on Data Engineering.

[73]  Laks V. S. Lakshmanan,et al.  Mining frequent itemsets with convertible constraints , 2001, Proceedings 17th International Conference on Data Engineering.

[74]  Philip S. Yu,et al.  Clustering by pattern similarity in large data sets , 2002, SIGMOD '02.

[75]  Jaideep Srivastava,et al.  Selecting the right interestingness measure for association patterns , 2002, KDD.

[76]  Rajeev Motwani,et al.  Approximate Frequency Counts over Data Streams , 2012, VLDB.

[77]  Ehud Gudes,et al.  Computing frequent graph patterns from semistructured data , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[78]  Mohammed J. Zaki,et al.  CHARM: An Efficient Algorithm for Closed Itemset Mining , 2002, SDM.

[79]  Jian Pei,et al.  On computing condensed frequent pattern bases , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[80]  Laks V. S. Lakshmanan,et al.  Quotient Cube: How to Summarize the Semantics of a Data Cube , 2002, VLDB.

[81]  Martin Ester,et al.  Frequent term-based text clustering , 2002, KDD.

[82]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[83]  Hongjun Lu,et al.  Condensed cube: an effective approach to reducing data cube size , 2002, Proceedings 18th International Conference on Data Engineering.

[84]  Ke Wang,et al.  Mining frequent item sets by opportunistic projection , 2002, KDD.

[85]  Toon Calders,et al.  Mining All Non-derivable Frequent Itemsets , 2002, PKDD.

[86]  Christian Borgelt,et al.  Mining molecular fragments: finding relevant substructures of molecules , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[87]  Yannis Sismanis,et al.  Dwarf: shrinking the PetaCube , 2002, SIGMOD '02.

[88]  Mohammed J. Zaki Efficiently mining frequent trees in a forest , 2002, KDD.

[89]  Hongjun Lu,et al.  On computing, storing and querying frequent patterns , 2003, KDD '03.

[90]  Anthony K. H. Tung,et al.  Carpenter: finding closed patterns in long biological datasets , 2003, KDD '03.

[91]  Jiawei Han,et al.  CloseGraph: mining closed frequent graph patterns , 2003, KDD '03.

[92]  G. Karypis,et al.  Frequent sub-structure-based approaches for classifying chemical compounds , 2005, Third IEEE International Conference on Data Mining.

[93]  Won Suk Lee,et al.  Finding recent frequent itemsets adaptively over online data streams , 2003, KDD '03.

[94]  Mong-Li Lee,et al.  Efficient Mining of XML Query Patterns for Caching , 2003, VLDB.

[95]  Laks V. S. Lakshmanan,et al.  Mining unexpected rules by pushing user dynamics , 2003, KDD '03.

[96]  Jiawei Han,et al.  CoMine: efficient mining of correlated patterns , 2003, Third IEEE International Conference on Data Mining.

[97]  Xifeng Yan,et al.  CloSpan: Mining Closed Sequential Patterns in Large Datasets , 2003, SDM.

[98]  Takashi Washio,et al.  State of the art of graph-based data mining , 2003, SKDD.

[99]  J. Snoeyink,et al.  Mining Spatial Motifs from Protein Structure Graphs , 2003 .

[100]  Jiawei Han,et al.  Star-Cubing: Computing Iceberg Cubes by Top-Down and Bottom-Up Integration , 2003, Very Large Data Bases Conference.

[101]  Gösta Grahne,et al.  Efficiently Using Prefix-trees in Mining Frequent Itemsets , 2003, FIMI.

[102]  Edward Omiecinski,et al.  Alternative Interest Measures for Mining Associations in Databases , 2003, IEEE Trans. Knowl. Data Eng..

[103]  Ganesh Ramesh,et al.  Feasible itemset distributions in data mining: theory and application , 2003, PODS '03.

[104]  Wei Wang,et al.  Efficient mining of frequent subgraphs in the presence of isomorphism , 2003, Third IEEE International Conference on Data Mining.

[105]  Mohammed J. Zaki,et al.  Web Usage Mining — Languages and Algorithms , 2003 .

[106]  Dino Pedreschi,et al.  ExAnte: Anticipated Data Reduction in Constrained Pattern Mining , 2003, PKDD.

[107]  Jiawei Han,et al.  CPAR: Classification based on Predictive Association Rules , 2003, SDM.

[108]  Jiong Yang,et al.  CLUSEQ: efficient and effective sequence clustering , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[109]  MAGDALINI EIRINAKI,et al.  Web mining for web personalization , 2003, TOIT.

[110]  Jian Pei,et al.  CLOSET+: searching for the best strategies for mining frequent closed itemsets , 2003, KDD '03.

[111]  Richard M. Karp,et al.  A simple algorithm for finding frequent elements in streams and bags , 2003, TODS.

[112]  Aristides Gionis,et al.  Fragments of order , 2003, KDD '03.

[113]  Xin Zhang,et al.  Fast mining of spatial collocations , 2004, KDD.

[114]  Philip S. Yu,et al.  Graph indexing: a frequent structure-based approach , 2004, SIGMOD '04.

[115]  Yuanyuan Zhou,et al.  CP-Miner: A Tool for Finding Copy-paste and Related Bugs in Operating System Code , 2004, OSDI.

[116]  Sunita Sarawagi,et al.  Integrating Association Rule Mining with Relational Database Systems: Alternatives and Implications , 1998, SIGMOD '98.

[117]  Jianyong Wang,et al.  Efficient closed pattern mining in the presence of tough block constraints , 2004, KDD.

[118]  Heikki Mannila,et al.  Discovery of Frequent Episodes in Event Sequences , 1997, Data Mining and Knowledge Discovery.

[119]  Heikki Mannila,et al.  Dense itemsets , 2004, KDD.

[120]  Chen Wang,et al.  Scalable mining of large disk-based graph databases , 2004, KDD.

[121]  Anthony K. H. Tung,et al.  COBBLER: combining column and row enumeration for closed pattern discovery , 2004, Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004..

[122]  Szymon Jaroszewicz,et al.  Interestingness of frequent itemsets using Bayesian networks as background knowledge , 2004, KDD.

[123]  Hui Xiong,et al.  A Framework for Discovering Co-Location Patterns in Data Sets with Extended Spatial Objects , 2004, SDM.

[124]  Vipin Kumar,et al.  Support envelopes: a technique for exploring the structure of association patterns , 2004, KDD.

[125]  Hiroki Arimura,et al.  Efficient Substructure Discovery from Large Semi-Structured Data , 2001, IEICE Trans. Inf. Syst..

[126]  Rajeev Motwani,et al.  Scalable Techniques for Mining Causal Structures , 1998, Data Mining and Knowledge Discovery.

[127]  B. Shekar,et al.  A transaction-based neighbourhood-driven approach to quantifying interestingness of association rules , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[128]  Jiong Yang,et al.  SPIN: mining maximal frequent subgraphs from graph databases , 2004, KDD.

[129]  George Karypis,et al.  GREW - a scalable frequent subgraph discovery algorithm , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[130]  Hongjun Lu,et al.  False Positive or False Negative: Mining Frequent Itemsets from High Speed Transactional Data Streams , 2004, VLDB.

[131]  Guizhen Yang,et al.  The complexity of mining maximal frequent itemsets and maximal frequent patterns , 2004, KDD.

[132]  Mohammed J. Zaki,et al.  SPADE: An Efficient Algorithm for Mining Frequent Sequences , 2004, Machine Learning.

[133]  Jiawei Han,et al.  IncSpan: incremental mining of sequential patterns in large database , 2004, KDD.

[134]  Jianyong Wang,et al.  Mining sequential patterns by pattern-growth: the PrefixSpan approach , 2004, IEEE Transactions on Knowledge and Data Engineering.

[135]  Joost N. Kok,et al.  A quickstart in frequent structure mining can make a difference , 2004, KDD.

[136]  Yuanyuan Zhou,et al.  Association Proceedings of the Third USENIX Conference on File and Storage Technologies San Francisco , CA , USA March 31 – April 2 , 2004 , 2004 .

[137]  Francesco Bonchi,et al.  On closed constrained frequent pattern mining , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[138]  Jian Pei,et al.  Mining constrained gradients in large databases , 2004, IEEE Transactions on Knowledge and Data Engineering.

[139]  Leonid Khachiyan,et al.  Cubegrades: Generalizing Association Rules , 2002, Data Mining and Knowledge Discovery.

[140]  Aristides Gionis,et al.  Approximating a collection of frequent sets , 2004, KDD.

[141]  Srinivasan Parthasarathy,et al.  Parallel Algorithms for Discovery of Association Rules , 1997, Data Mining and Knowledge Discovery.

[142]  Jiawei Han,et al.  BIDE: efficient mining of frequent closed sequences , 2004, Proceedings. 20th International Conference on Data Engineering.

[143]  Daniel Kifer,et al.  DualMiner: A Dual-Pruning Algorithm for Itemsets with Constraints , 2002, Data Mining and Knowledge Discovery.

[144]  Balaji Padmanabhan,et al.  On the discovery of significant statistical quantitative rules , 2004, KDD.

[145]  Philip S. Yu,et al.  Moment: maintaining closed frequent itemsets over a stream sliding window , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[146]  Nikos Mamoulis,et al.  Mining frequent spatio-temporal sequential patterns , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[147]  Arbee L. P. Chen,et al.  Mining Frequent Itemsets from Data Streams with a Time-Sensitive Sliding Window , 2005, SDM.

[148]  Jiawei Han,et al.  TFP: an efficient algorithm for mining top-k frequent closed itemsets , 2005, IEEE Transactions on Knowledge and Data Engineering.

[149]  Jiawei Han,et al.  Summarizing itemset patterns: a profile-based approach , 2005, KDD '05.

[150]  Jiawei Han,et al.  SeqIndex: Indexing Sequences by Sequential Pattern Analysis , 2005, SDM.

[151]  Jiawei Han,et al.  Mining Compressed Frequent-Pattern Sets , 2005, VLDB.

[152]  Anthony K. H. Tung,et al.  Mining top-K covering rule groups for gene expression data , 2005, SIGMOD '05.

[153]  Srinivasan Parthasarathy,et al.  Discovering frequent topological structures from graph datasets , 2005, KDD '05.

[154]  Heikki Mannila,et al.  Finding partial orders from unordered 0-1 data , 2005, KDD '05.

[155]  Jiawei Han,et al.  Mining Frequent Patterns from Very High Dimensional Data : A Top-Down Row Enumeration Approach , 2005 .

[156]  Szymon Jaroszewicz,et al.  Fast discovery of unexpected patterns in data, relative to a Bayesian network , 2005, KDD '05.

[157]  Zhenmin Li,et al.  PR-Miner: automatically extracting implicit programming rules and detecting violations in large software code , 2005, ESEC/FSE-13.

[158]  James Bailey,et al.  Mining minimal distinguishing subsequence patterns with gap constraints , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[159]  Divyakant Agrawal,et al.  Efficient Computation of Frequent and Top-k Elements in Data Streams , 2005, ICDT.

[160]  Philip S. Yu,et al.  Substructure similarity search in graph databases , 2005, SIGMOD '05.

[161]  Régis Gras,et al.  Using information-theoretic measures to assess association rule interestingness , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[162]  Chao Liu,et al.  Mining Behavior Graphs for "Backtrace" of Noncrashing Bugs , 2005, SDM.

[163]  Philip S. Yu,et al.  Efficiently mining frequent closed partial orders , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[164]  John J. Leggett,et al.  WFIM: Weighted Frequent Itemset Mining with a weight range and a minimum weight , 2005, SDM.

[165]  Toon Calders,et al.  Depth-First Non-Derivable Itemset Mining , 2005, SDM.

[166]  Jianyong Wang,et al.  HARMONY: Efficiently Mining the Best Rules for Classification , 2005, SDM.

[167]  Ruoming Jin,et al.  An algorithm for in-core frequent itemset mining on streaming data , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[168]  David A. Padua,et al.  Parallel mining of closed sequential patterns , 2005, KDD '05.

[169]  Jiawei Han,et al.  Mining closed relational graphs with connectivity constraints , 2005, 21st International Conference on Data Engineering (ICDE'05).

[170]  Soon Myoung Chung,et al.  Efficient Mining of Maximal Sequential Patterns Using Multiple Samples , 2005, SDM.

[171]  Jilles Vreeken,et al.  Item Sets that Compress , 2006, SDM.

[172]  Andrew B. Nobel,et al.  Mining Approximate Frequent Itemsets In the Presence of Noise: Algorithm and Analysis , 2006, SDM.

[173]  Sangkyum Kim,et al.  Motion-Alert: Automatic Anomaly Detection in Massive Moving Objects , 2006, ISI.

[174]  Jiawei Han,et al.  Generating semantic annotations for frequent patterns with context analysis , 2006, KDD '06.

[175]  Hongyan Liu,et al.  C-Cubing: Efficient Computation of Closed Cubes by Aggregation-Based Checking , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[176]  James Bailey,et al.  Mining Minimal Contrast Subgraph Patterns , 2006, SDM.

[177]  Jiawei Han,et al.  Discovering interesting patterns through user's interactive feedback , 2006, KDD '06.

[178]  Jinyan Li,et al.  Positive Borders or Negative Borders: How to Make Lossless Generator Based Representations Concise , 2006, SDM.

[179]  Philip S. Yu,et al.  Searching Substructures with Superimposed Distance , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[180]  Jiawei Han,et al.  Discriminative Frequent Pattern Analysis for Effective Classification , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[181]  Philip S. Yu,et al.  Mining Colossal Frequent Patterns by Core Pattern Fusion , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[182]  Aristides Gionis,et al.  Assessing data mining results via swap randomization , 2007, TKDD.