Large-Scale Synthesis and Systematic Photoluminescence Properties of Monolayer MoS2 on Fused Silica.

Monolayer MoS2, with fascinating mechanical, electrical, and optical properties, has generated enormous scientific curiosity and industrial interest. Controllable and scalable synthesis of monolayer MoS2 on various desired substrates has significant meaning in both basic scientific research and device application. Recent years have witnessed many advances in the direct synthesis of single-crystalline MoS2 flakes or their polycrystalline aggregates on numerous diverse substrates, such as SiO2-Si, mica, sapphire, h-BN, and SrTiO3, etc. In this work, we used the dual-temperature-zone atmospheric-pressure chemical vapor deposition method to directly synthesize large-scale monolayer MoS2 on fused silica, the most ordinary transparent insulating material in daily life. We systematically investigated the photoluminescence (PL) properties of monolayer MoS2 on fused silica and SiO2-Si substrates, which have different thermal conductivity coefficients and thermal expansion coefficients. We found that there exists a stronger strain on monolayer MoS2 grown on fused silica, and the strain becomes more obvious as temperature decreases. Moreover, the monolayer MoS2 grown on fused silica exhibits the unique trait of a fractal shape with tortuous edges and has stronger adsorbability. The monolayer MoS2 grown on fused silica may find application in sensing, energy storage, and transparent optoelectronics, etc.

[1]  Jingyu Sun,et al.  Dendritic, transferable, strictly monolayer MoS2 flakes synthesized on SrTiO3 single crystals for efficient electrocatalytic applications. , 2014, ACS nano.

[2]  Zhang,et al.  Atomistic Processes in the Early Stages of Thin-Film Growth , 1997, Science.

[3]  L. Dai,et al.  Measuring the Refractive Index of Highly Crystalline Monolayer MoS2 with High Confidence , 2015, Scientific Reports.

[4]  Yanlong Wang,et al.  Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. , 2013, Small.

[5]  Jr-hau He,et al.  Band gap-tunable molybdenum sulfide selenide monolayer alloy. , 2014, Small.

[6]  K. O'Donnell,et al.  Temperature dependence of semiconductor band gaps , 1991 .

[7]  Dong Wang,et al.  Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. , 2013, ACS nano.

[8]  L. Dai,et al.  Origin of Improved Optical Quality of Monolayer Molybdenum Disulfide Grown on Hexagonal Boron Nitride Substrate. , 2016, Small.

[9]  H. Sugiura,et al.  Effect of strain in the barrier layer on structural and optical properties of highly strained In0.77Ga0.23As/InGaAs multiple quantum wells , 2000 .

[10]  Hyman Joseph Levinstein,et al.  Thermal stresses and cracking resistance of dielectric films (SiN, Si3N4, and SiO2) on Si substrates , 1978 .

[11]  T. Qiu,et al.  Effect of Sintering Temperature on the Properties of Fused Silica Ceramics Prepared by Gelcasting , 2014, Journal of Electronic Materials.

[12]  Ning Li,et al.  Effect of temperature on thermal properties of monolayer MoS2 sheet , 2015 .

[13]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[14]  J. Su,et al.  Performance of field-effect transistors based on Nb(x)W(1-x)S2 monolayers. , 2016, Nanoscale.

[15]  X. Marie,et al.  Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2 , 2013, 1306.3442.

[16]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[17]  H. Zeng,et al.  Resonance Raman scattering in bulk 2H-MX2 (M = Mo, W; X = S, Se) and monolayer MoS2 , 2014 .

[18]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[19]  Hongfei Liu,et al.  Dispersive growth and laser-induced rippling of large-area singlelayer MoS2 nanosheets by CVD on c-plane sapphire substrate , 2015, Scientific Reports.

[20]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[21]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[22]  T. O’Regan,et al.  Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride. , 2016, ACS nano.

[23]  Jingyu Sun,et al.  Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes , 2015, Nano Research.

[24]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[25]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[26]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[27]  A. McGaughey,et al.  Thermal conductivity accumulation in amorphous silica and amorphous silicon , 2014 .

[28]  Wenhui Wang,et al.  Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding. , 2014, ACS nano.

[29]  Jingyu Sun,et al.  Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture , 2015, Advanced materials.

[30]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[31]  Yong-Wei Zhang,et al.  Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2 , 2013, 1312.3729.

[32]  Suyeon Cho,et al.  Phase patterning for ohmic homojunction contact in MoTe2 , 2015, Science.

[33]  Qiang Sun,et al.  Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. , 2015, Nano letters.

[34]  Kenji Watanabe,et al.  Direct Growth of Single- and Few-Layer MoS2 on h-BN with Preferred Relative Rotation Angles. , 2015, Nano letters.

[35]  Jingyu Sun,et al.  Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications. , 2015, Nano letters.

[36]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[37]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[38]  Yuerui Lu,et al.  Exciton and Trion Dynamics in Bilayer MoS2. , 2015, Small.

[39]  Madan Dubey,et al.  Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition , 2014, Nature Communications.

[40]  R. Murray,et al.  The thermal expansion of 2H-MoS2 and 2H-WSe2 between 10 and 320 K , 1979 .

[41]  W. Escoffier,et al.  Optical manipulation of the exciton charge state in single-layer tungsten disulfide , 2013, 1312.1051.

[42]  Qihua Xiong,et al.  Laser cooling of a semiconductor by 40 kelvin , 2013, Nature.

[43]  J. Warner,et al.  All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures. , 2015, ACS nano.

[44]  Yu Zhang,et al.  Epitaxial monolayer MoS2 on mica with novel photoluminescence. , 2013, Nano letters.

[45]  R. M. Mehra,et al.  Photoluminescence and absorption in sol gel-derived ZnO films , 2007 .

[46]  N. Xu,et al.  Monolayer MoS2 Dendrites on a Symmetry‐Disparate SrTiO3 (001) Substrate: Formation Mechanism and Interface Interaction , 2016 .

[47]  Yiming Zhu,et al.  Semiconductors: Growth of Large‐Area 2D MoS2(1‐x)Se2x Semiconductor Alloys (Adv. Mater. 17/2014) , 2014 .

[48]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[49]  E. Yablonovitch,et al.  Near-unity photoluminescence quantum yield in MoS2 , 2015, Science.

[50]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[51]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[52]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.