Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride

[1]  M. Eremets,et al.  Superconducting Hydrides Under Pressure , 2019, 1910.00385.

[2]  S. Mozaffari,et al.  Superconductivity up to 243 K in yttrium hydrides under high pressure , 2019, 1909.10482.

[3]  A. Oganov,et al.  Synthesis and Superconductivity of Yttrium Hexahydride Im$\bar3$m-YH$_6$ , 2019, 1908.01534.

[4]  A. Sanna,et al.  Density functional theory of superconductivity in doped tungsten oxides , 2019, Physical Review Materials.

[5]  R. Hemley,et al.  Road to Room-Temperature Superconductivity: Tc above 260 K in Lanthanum Superhydride under Pressure. , 2019, 1906.03462.

[6]  M. Eremets,et al.  A perspective on conventional high-temperature superconductors at high pressure: Methods and materials , 2019, 1905.06693.

[7]  Artem R. Oganov,et al.  Structure prediction drives materials discovery , 2019, Nature Reviews Materials.

[8]  A. Oganov,et al.  Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties , 2019, Materials Today.

[9]  D. Graf,et al.  Superconductivity at 250 K in lanthanum hydride under high pressures , 2018, Nature.

[10]  Jun-Hyung Cho,et al.  Microscopic mechanism of room-temperature superconductivity in compressed LaH10 , 2018, Physical Review B.

[11]  J. Tse,et al.  Dynamics and superconductivity in compressed lanthanum superhydride , 2018, Physical Review B.

[12]  R. Hemley,et al.  Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. , 2018, Physical review letters.

[13]  E. Zurek,et al.  The Search for Superconductivity in High Pressure Hydrides , 2018, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.

[14]  M. Calandra,et al.  Pressure and stress tensor of complex anharmonic crystals within the stochastic self-consistent harmonic approximation , 2018, Physical Review B.

[15]  M. Calandra,et al.  High-pressure phase diagram of hydrogen and deuterium sulfides from first principles: Structural and vibrational properties including quantum and anharmonic effects , 2018, Physical Review B.

[16]  G. Profeta,et al.  Ab initio Eliashberg Theory: Making Genuine Predictions of Superconducting Features , 2018 .

[17]  Maria Baldini,et al.  Synthesis and Stability of Lanthanum Superhydrides. , 2018, Angewandte Chemie.

[18]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Yanming Ma,et al.  Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity. , 2017, Physical review letters.

[20]  Roald Hoffmann,et al.  Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure , 2017, Proceedings of the National Academy of Sciences.

[21]  S. Goedecker,et al.  Interplay between structure and superconductivity: Metastable phases of phosphorus under pressure , 2017, 1703.05694.

[22]  L. Paulatto,et al.  Second-order structural phase transitions, free energy curvature, and temperature-dependent anharmonic phonons in the self-consistent harmonic approximation: Theory and stochastic implementation , 2017, 1703.03212.

[23]  Jian Lv,et al.  Materials discovery at high pressures , 2017 .

[24]  I. Silvera,et al.  Observation of the Wigner-Huntington transition to metallic hydrogen , 2016, Science.

[25]  R. Arita,et al.  Effect of Van Hove singularities on high- T c superconductivity in H 3 S , 2015, 1512.07365.

[26]  Yanming Ma,et al.  Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system , 2015, Nature.

[27]  C. Heil,et al.  Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure , 2015, 1512.02132.

[28]  A. Floris,et al.  First-Principles Calculation of the Real-Space Order Parameter and Condensation Energy Density in Phonon-Mediated Superconductors. , 2015, Physical review letters.

[29]  M. Eremets,et al.  Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system , 2015, Nature.

[30]  E. Gross,et al.  High temperature superconductivity in sulfur and selenium hydrides at high pressure , 2015, The European Physical Journal B.

[31]  A. Sanna,et al.  Superconductivity in intercalated group-IV honeycomb structures , 2014, 1411.4792.

[32]  Da Li,et al.  Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity , 2014, Scientific Reports.

[33]  Yanming Ma,et al.  The metallization and superconductivity of dense hydrogen sulfide. , 2014, The Journal of chemical physics.

[34]  M. Calandra,et al.  Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides , 2013, 1311.3083.

[35]  M. Calandra,et al.  First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds. , 2013, Physical review letters.

[36]  S. Goedecker,et al.  Crystal structure prediction using the minima hopping method. , 2010, The Journal of chemical physics.

[37]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  G. Profeta,et al.  The role of Coulomb interaction in the superconducting properties of CaC6 and H under pressure , 2008, 0811.2194.

[39]  G. Profeta,et al.  Ab-initio theory of superconductivity - I: Density functional formalism and approximate functionals , 2004, cond-mat/0408685.

[40]  G. Profeta,et al.  Ab initio theory of superconductivity. II. Application to elemental metals , 2004, cond-mat/0408686.

[41]  S. Goedecker Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.

[42]  N. Ashcroft Hydrogen dominant metallic alloys: high temperature superconductors? , 2004, Physical review letters.

[43]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[44]  M. Parrinello,et al.  Tunnelling and zero-point motion in high-pressure ice , 1998, Nature.

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[47]  Luiz N. Oliveira,et al.  Density Functional Theory for Superconductors , 1988 .

[48]  P. B. Allen,et al.  SUPERCONDUCTIVITY AND PHONON SOFTENING. , 1972 .

[49]  J. Gilman Lithium Dihydrogen Fluoride—An Approach to Metallic Hydrogen , 1971 .

[50]  N. Ashcroft,et al.  METALLIC HYDROGEN: A HIGH-TEMPERATURE SUPERCONDUCTOR. , 1968 .

[51]  I. Silvera,et al.  Observation of the Wigner-Huntington Transition to Solid Metallic Hydrogen , 2016 .