Mixed H/sub 2//H/sub /spl infin// filtering for uncertain systems with regional pole assignment

The mixed H/sub 2//H/sub /spl infin// filtering problem for uncertain linear continuous-time systems with regional pole assignment is considered. The purpose of the problem is to design an uncertainty-independent filter such that, for all admissible parameter uncertainties, the following filtering requirements are simultaneously satisfied: 1) the filtering process is asymptotically stable; 2) the poles of the filtering matrix are located inside a prescribed region that compasses the vertical strips, horizontal strips, disks, or conic sectors; 3) both the H/sub 2/ norm and the H/sub /spl infin// norm on the respective transfer functions are not more than the specified upper bound constraints. We establish a general framework to solve the addressed multiobjective filtering problem completely. In particular, we derive necessary and sufficient conditions for the solvability of the problem in terms of a set of feasible linear matrix inequalities (LMIs). An illustrative example is given to illustrate the design procedures and performances of the proposed method.

[1]  Heinz Unbehauen,et al.  Robust H2/H∞-state estimation for systems with error variance constraints: the continuous-time case , 1999, IEEE Trans. Autom. Control..

[2]  Biao Huang,et al.  Robust H2/H∞ filtering for linear systems with error variance constraints , 2000, IEEE Trans. Signal Process..

[3]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[4]  J. Geromel,et al.  An LMI optimization approach to multiobjective controller design for discrete-time systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[5]  Minyue Fu,et al.  Robust 𝒽∞ filtering for continuous time varying uncertain systems with deterministic input signals , 1995, IEEE Trans. Signal Process..

[6]  Uri Shaked,et al.  Robust H2 filtering for uncertain systems with measurable inputs , 1999, IEEE Trans. Signal Process..

[7]  José Claudio Geromel,et al.  Optimal linear filtering under parameter uncertainty , 1999, IEEE Trans. Signal Process..

[8]  Minyue Fu,et al.  A linear matrix inequality approach to robust H∞ filtering , 1997, IEEE Trans. Signal Process..

[9]  T. IWASAKIt,et al.  All Controllers for the General Control Problem : LMI Existence Conditions and State Space Formulas * , 2002 .

[10]  Lihua Xie,et al.  Output feedback H∞ control of systems with parameter uncertainty , 1996 .

[11]  Y. S. Hung Model-matching approach to H∞ filtering , 1993 .

[12]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[13]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  D. Bernstein,et al.  Steady-state Kalman filtering with an H ∞ error bound , 1989 .

[15]  Hong Qiao,et al.  Robust filtering for bilinear uncertain stochastic discrete-time systems , 2002, IEEE Trans. Signal Process..

[16]  Etsujiro Shimemura,et al.  Mixed H2/H∞ control with pole placement in a class of regions , 1994 .

[17]  Yeung Sam Hung,et al.  A Kalman Filter Approach to Direct Depth Estimation Incorporating Surface Structure , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  U. Shaked,et al.  H,-OPTIMAL ESTIMATION: A TUTORIAL , 1992 .

[19]  U. Shaked,et al.  H/sub infinity /-optimal estimation: a tutorial , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[20]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[21]  Izumi Masubuchi,et al.  LMI-based controller synthesis: A unified formulation and solution , 1998 .

[22]  Uri Shaked,et al.  A dynamic game approach to mixedH∞/H2 estimation , 1996 .

[23]  Maurício C. de Oliveira,et al.  H2 and H∞ robust filtering for convex bounded uncertain systems , 2001, IEEE Trans. Autom. Control..

[24]  D. Bernstein,et al.  Steady-state kalman filtering with an H∞ error bound , 1989, 1989 American Control Conference.

[25]  Fuwen Yang,et al.  Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises , 2002, IEEE Trans. Autom. Control..

[26]  X. Chen,et al.  Multiobjective filtering design , 1999, Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.99TH8411).

[27]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[28]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[29]  Moshe Idan,et al.  H2/H8 filtering: theory and an aerospace application , 1996 .

[30]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.