ATLAS: a framework for large scale automated mapping and localization

This thesis describes a scalable robotic navigation system that builds a map of the robot's environment on the fly. This problem is also known as Simultaneous Localization and Mapping (SLAM). The SLAM problem has as inputs the control of the robot's motion and sensor measurements to features in the environment. The desired output is the path traversed by the robot (localization) and a representation of the sensed environment (mapping). The principal contribution of this thesis is the introduction of a framework, termed Atlas, that alleviates the computational restrictions of previous approaches to SLAM when mapping extended environments. The Atlas framework partitions the SLAM problem into a graph of submaps, each with its own coordinate system. Furthermore, the framework facilitates the modularity of sensors, map representations, and local navigation algorithms by encapsulating the implementation specific algorithms module that matches submaps and a verification procedure that trades latency in loop closing with a lower chance of incorrect loop detections inherent with symmetric environments. The framework is demonstrated with several datasets that map large indoor and urban outdoor environments using a variety of sensors: a laser scanner, sonar rangers, and omni-directional video. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

[1]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[2]  S. M. Steve SUSAN - a new approach to low level image processing , 1997 .

[3]  O. Faugeras,et al.  The Geometry of Multiple Images , 1999 .

[4]  Michael Bosse,et al.  Mapping Partially Observable Features from Multiple Uncertain Vantage Points , 2002, Int. J. Robotics Res..

[5]  Andrew J. Davison,et al.  Mobile Robot Navigation Using Active Vision , 1998 .

[6]  Lindsay Kleeman,et al.  Large Scale Sonarray Mapping using Multiple Connected Local Maps , 1998 .

[7]  Sebastian Thrun,et al.  Online simultaneous localization and mapping with detection and tracking of moving objects: theory and results from a ground vehicle in crowded urban areas , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[8]  Hugh F. Durrant-Whyte,et al.  A Bayesian Algorithm for Simultaneous Localisation and Map Building , 2001, ISRR.

[9]  Patric Jensfelt,et al.  Using multiple Gaussian hypotheses to represent probability distributions for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  Seth J. Teller,et al.  Scalable Extrinsic Calibration of Omni-Directional Image Networks , 2002, International Journal of Computer Vision.

[11]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[12]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[13]  Lindsay Kleeman,et al.  Sonar based map building for a mobile robot , 1997, Proceedings of International Conference on Robotics and Automation.

[14]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[15]  Zhengyou Zhang,et al.  Incremental Motion Estimation Through Local Bundle Adjustment , 2001 .

[16]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[17]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[18]  D. McDowell Foreword , 1999 .

[19]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[20]  J. Leonard,et al.  Decoupled Stochastic Mapping , 2001 .

[21]  Michael Bosse,et al.  Calibrated, Registered Images of an Extended Urban Area , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[22]  Refractor Vision , 2000, The Lancet.

[23]  Andrew W. Fitzgibbon,et al.  Automatic Camera Recovery for Closed or Open Image Sequences , 1998, ECCV.

[24]  Benjamin Kuipers,et al.  The Spatial Semantic Hierarchy , 2000, Artif. Intell..

[25]  John J. Leonard,et al.  Adaptive Mobile Robot Navigation and Mapping , 1999, Int. J. Robotics Res..

[26]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[27]  Peter Cheeseman,et al.  A stochastic map for uncertain spatial relationships , 1988 .

[28]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[29]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Daniel G. Aliaga,et al.  Robust Bundle Adjustment for Structure from Motion , 2006, 2006 International Conference on Image Processing.

[31]  Y. Bar-Shalom Tracking and data association , 1988 .

[32]  John J. Leonard,et al.  Robust Mapping and Localization in Indoor Environments Using Sonar Data , 2002, Int. J. Robotics Res..

[33]  Alan C. Schultz,et al.  Continuous localization using evidence grids , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[34]  Wolfram Burgard,et al.  Experiences with an Interactive Museum Tour-Guide Robot , 1999, Artif. Intell..

[35]  Stefano Soatto,et al.  MFM": 3-D motion from 2-D motion causally integrated over time , 2000, ECCV 2000.

[36]  R. Fletcher Practical Methods of Optimization , 1988 .

[37]  Sebastian Thrun,et al.  A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots , 2001, Int. J. Robotics Res..

[38]  Eduardo Mario Nebot,et al.  Localisation in large-scale environments , 2001, Robotics Auton. Syst..

[39]  Michael Bosse,et al.  Autonomous feature-based exploration , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[40]  Hugh F. Durrant-Whyte,et al.  A high integrity navigation architecture for outdoor autonomous vehicles , 1999, Robotics Auton. Syst..

[41]  John J. Leonard,et al.  Stochastic mapping using forward look sonar , 2001, Robotica.

[42]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[43]  David J. Kriegman,et al.  Structure and Motion from Line Segments in Multiple Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Jeffrey K. Uhlmann,et al.  General data fusion for estimates with unknown cross covariances , 1996, Defense, Security, and Sensing.

[45]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[46]  Wolfram Burgard,et al.  A system for volumetric robotic mapping of abandoned mines , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[47]  John J. Leonard,et al.  Consistent, Convergent, and Constant-Time SLAM , 2003, IJCAI.

[48]  Sebastian Thrun,et al.  Results for outdoor-SLAM using sparse extended information filters , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[49]  조동우 A Bayesian Method for Certainty Grids , 1989 .

[50]  Robert C. Bolles,et al.  A RANSAC-Based Approach to Model Fitting and Its Application to Finding Cylinders in Range Data , 1981, IJCAI.

[51]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[52]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[53]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Stefan B. Williams,et al.  An efficient approach to the simultaneous localisation and mapping problem , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[55]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[56]  Hugh F. Durrant-Whyte,et al.  Simultaneous Mapping and Localization with Sparse Extended Information Filters: Theory and Initial Results , 2004, WAFR.

[57]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[58]  Wolfram Burgard,et al.  Map building with mobile robots in populated environments , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[59]  Lindsay Kleeman,et al.  Sonar Based Map Building in Large Indoor Environments , 1997 .