Weighted Eigenfunction Estimates with Applications to Compressed Sensing

Using tools from semiclassical analysis, we give weighted L^\infty estimates for eigenfunctions of strictly convex surfaces of revolution. These estimates give rise to new sampling techniques and provide improved bounds on the number of samples necessary for recovering sparse eigenfunction expansions on surfaces of revolution. On the sphere, our estimates imply that any function having an s-sparse expansion in the first N spherical harmonics can be efficiently recovered from its values at m > s N^(1/6) log^4(N) sampling points.

[1]  P. Gérard,et al.  Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds , 2005, math/0506394.

[2]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators IV , 1985 .

[3]  L. Hörmander,et al.  The spectral function of an elliptic operator , 1968 .

[4]  Ivana Alexandrova Semi-Classical Wavefront Set and Fourier Integral Operators , 2008, Canadian Journal of Mathematics.

[5]  Semyon Dyatlov,et al.  Quasi-Normal Modes and Exponential Energy Decay for the Kerr-de Sitter Black Hole , 2010, 1003.6128.

[6]  Holger Rauhut Stability Results for Random Sampling of Sparse Trigonometric Polynomials , 2008, IEEE Transactions on Information Theory.

[7]  M. Dimassi,et al.  Spectral Asymptotics in the Semi-Classical Limit: Improvement when the periodic trajectories form a set of measure 0 , 1999 .

[8]  Janet M. Thornton,et al.  Real spherical harmonic expansion coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons , 2005, Bioinform..

[9]  Alain Grigis,et al.  Microlocal Analysis for Differential Operators: An Introduction , 1994 .

[10]  H. Rauhut,et al.  Sparse recovery for spherical harmonic expansions , 2011, 1102.4097.

[11]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[12]  Ilia Krasikov On the Erdelyi-Magnus-Nevai Conjecture for Jacobi Polynomials , 2008 .

[13]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[14]  H. Rauhut,et al.  Sparse Legendre expansions via $\ell_1$ minimization , 2010, 1003.0251.

[15]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[16]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[17]  Massimo Fornasier,et al.  Compressive Sensing and Structured Random Matrices , 2010 .

[18]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[19]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[20]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis , 1983 .

[21]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[22]  Anne-Marie Charbonnel Spectre conjoint d'opérateurs pseudodifférentiels qui commutent , 1982 .