Dual-band superposition induced broadband terahertz linear-to-circular polarization converter

A reflective broadband terahertz (THz) linear-to-circular (LTC) polarization converter based on a single-layer ultrathin metasurface is designed and experimentally demonstrated. Two different-size rectangular ultrathin metasurface micro-structures are proposed to realize such a broadband THz LTC polarization converter with bandwidth ranging from 0.832 to 1.036 THz. The phase delay between two orthogonal resonance modes is −90°±5°. These qualities are realized mainly by combining two separated LTC polarization conversion frequencies and the benefit of the coupling between two different-size rectangles. The calculated results indicate that the bandwidth of the LTC polarization converter is controlled via the dimensions and period of the structure. This kind of ultrathin broadband THz polarization converter can be widely applied into wireless communication, imaging, and detection, and can widen the path to designing novel functional THz devices.

[1]  Shi Zheng,et al.  Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators , 2014 .

[2]  Jianqiang Gu,et al.  Highly flexible broadband terahertz metamaterial quarter‐wave plate , 2014 .

[3]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[4]  Zhen Tian,et al.  A perfect metamaterial polarization rotator , 2013 .

[5]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[6]  V Fusco,et al.  325 GHz Single Layer Sub-Millimeter Wave FSS Based Split Slot Ring Linear to Circular Polarization Convertor , 2010, IEEE Transactions on Antennas and Propagation.

[7]  Shan-Shan Jiang,et al.  Controlling the Polarization State of Light with a Dispersion-Free Metastructure , 2014 .

[8]  Jianguo Tian,et al.  Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface. , 2015, Optics letters.

[9]  Derek Abbott,et al.  Ultrabroadband reflective polarization convertor for terahertz waves , 2014 .

[10]  Shining Zhu,et al.  Cavity-involved plasmonic metamaterial for optical polarization conversion , 2010 .

[11]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[12]  Kaikai Xu,et al.  Cross polarization conversion based on a new chiral spiral slot structure in THz region , 2016 .

[13]  Yandong Gong,et al.  An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface. , 2015, Optics express.

[14]  Efficient and broadband polarization conversion with the coupled metasurfaces. , 2015, Optics express.

[15]  Zhao Zhang,et al.  Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes. , 2013, Physical review letters.

[16]  Jae‐Hyung Jang,et al.  A terahertz in-line polarization converter based on through-via connected double layer slot structures , 2017, Scientific Reports.

[17]  Ta-Jen Yen,et al.  A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission , 2013 .

[18]  L. Guo,et al.  Polarization rotation with ultra-thin bianisotropic metasurfaces , 2016 .

[19]  H. B. Chan,et al.  A half wave retarder made of bilayer subwavelength metallic apertures , 2011 .

[20]  Kallol Bhattacharya,et al.  Achromatic quarter-wave plate using crystalline quartz. , 2012, Applied optics.

[21]  Julien Jaeck,et al.  Plasmonic planar antenna for wideband and efficient linear polarization conversion , 2014 .

[22]  Tie Jun Cui,et al.  Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial , 2013 .

[23]  M. Koch,et al.  Terahertz form birefringence. , 2010, Optics express.

[24]  Tie Jun Cui,et al.  Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces , 2014 .

[25]  Xiaopeng Zhao,et al.  High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial , 2014 .

[26]  Ru-Wen Peng,et al.  Freely Tunable Broadband Polarization Rotator for Terahertz Waves , 2015, Advanced materials.

[27]  Q. Liu,et al.  Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays , 2015 .

[28]  Jean-Baptiste Masson,et al.  Terahertz achromatic quarter-wave plate. , 2006, Optics letters.

[29]  Romeo Beccherelli,et al.  Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals , 2017, Nanotechnology.

[30]  A. Roberts,et al.  Plasmonic quarter-wave plate. , 2012, Optics letters.

[31]  Qian-jin Wang,et al.  Break Through the Limitation of Malus' Law with Plasmonic Polarizers , 2014 .

[32]  Weili Zhang,et al.  A Tunable Dispersion‐Free Terahertz Metadevice with Pancharatnam–Berry‐Phase‐Enabled Modulation and Polarization Control , 2015, Advanced materials.

[33]  E. Ozbay,et al.  Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials , 2014 .

[34]  Aurélien Drezet,et al.  A perfect plasmonic quarter-wave plate , 2012 .

[35]  Yandong Gong,et al.  Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface , 2015, Scientific Reports.

[36]  Min-Hua Li,et al.  Enhanced asymmetric transmission due to Fabry-Perot-like cavity. , 2014, Optics express.

[37]  Biao Yang,et al.  Design of ultrathin plasmonic quarter-wave plate based on period coupling. , 2013, Optics letters.

[38]  Jianguo Tian,et al.  Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial , 2013 .

[39]  Q. Wei,et al.  Polarization Conversion with Elliptical Patch Nanoantennas , 2012 .

[40]  High Performance Broadband Asymmetric Polarization Conversion Due to Polarization-dependent Reflection , 2015, Plasmonics.

[41]  K. Crozier,et al.  Plasmonic wave plate based on subwavelength nanoslits. , 2011, Optics letters.

[42]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.