Near-Optimal Perfectly Matched Layers for Indefinite Helmholtz Problems

A new construction of an absorbing boundary condition for indefinite Helmholtz problems on unbounded domains is presented. This construction is based on a near-best uniform rational interpolant of the inverse square root function on the union of a negative and positive real interval, designed with the help of a classical result by Zolotarev. Using Krein's interpretation of a Stieltjes continued fraction, this interpolant can be converted into a three-term finite difference discretization of a perfectly matched layer (PML) which converges exponentially fast in the number of grid points. The convergence rate is asymptotically optimal for both propagative and evanescent wave modes. Several numerical experiments and illustrations are included.

[1]  Gunilla Kreiss,et al.  Perfectly Matched Layers for Hyperbolic Systems: General Formulation, Well-posedness, and Stability , 2006, SIAM J. Appl. Math..

[2]  Cyrill B. Muratov,et al.  Boundary Homogenization for Periodic Arrays of Absorbers , 2008, Multiscale Model. Simul..

[3]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[4]  T. Driscoll,et al.  Pseudospectra for the wave equation with an absorbing boundary , 1996 .

[5]  S. Elaydi An introduction to difference equations , 1995 .

[6]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[7]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[8]  A. Gončar,et al.  On the rate of rational approximation of analytic functions , 1989 .

[9]  C. Kelley Solving Nonlinear Equations with Newton's Method , 1987 .

[10]  Cyrill B. Muratov,et al.  Compensated optimal grids for elliptic boundary-value problems , 2008, J. Comput. Phys..

[11]  V. I. Lebedev,et al.  Variable time steps optimization of Lω -stable Crank–Nicolson method , 2005 .

[12]  S. Güttel Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .

[13]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[14]  Murthy N. Guddati,et al.  On Optimal Finite-Difference Approximation of PML , 2003, SIAM J. Numer. Anal..

[15]  Christophe Geuzaine,et al.  A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation , 2012, J. Comput. Phys..

[16]  Vladimir Druskin,et al.  Gaussian Spectral Rules for the Three-Point Second Differences: I. A Two-Point Positive Definite Problem in a Semi-Infinite Domain , 1999, SIAM J. Numer. Anal..

[17]  William H. Press,et al.  Numerical recipes in Fortran 77 : the art of scientificcomputing. , 1992 .

[18]  Murthy N. Guddati,et al.  Absorbing boundary conditions for time harmonic wave propagation in discretized domains , 2011 .

[19]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[20]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .

[21]  Aria Abubakar,et al.  2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements , 2008 .

[22]  John L. Tassoulas,et al.  CONTINUED-FRACTION ABSORBING BOUNDARY CONDITIONS FOR THE WAVE EQUATION , 2000 .

[23]  Liliana Borcea,et al.  Resistor network approaches to electrical impedance tomography , 2011 .

[24]  A. Gončar,et al.  Zolotarev Problems Connected with Rational Functions , 1969 .

[25]  Patrick Joly,et al.  Mathematical Modelling and Numerical Analysis on the Analysis of B ´ Erenger's Perfectly Matched Layers for Maxwell's Equations , 2022 .

[26]  A. Majda,et al.  Radiation boundary conditions for acoustic and elastic wave calculations , 1979 .

[27]  Tim Warburton,et al.  Complete Radiation Boundary Conditions: Minimizing the Long Time Error Growth of Local Methods , 2009, SIAM J. Numer. Anal..

[28]  I. S. Kats SPECTRAL FUNCTIONS OF A STRING , 1983 .

[29]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[30]  E. Rakhmanov,et al.  EQUILIBRIUM DISTRIBUTIONS AND DEGREE OF RATIONAL APPROXIMATION OF ANALYTIC FUNCTIONS , 1989 .

[31]  Martin J. Gander,et al.  Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..

[32]  Aria Abubakar,et al.  Hybrid finite-difference integral equation solver for 3D frequency domain anisotropic electromagnetic problems , 2011 .

[33]  Brian Davies,et al.  Partial Differential Equations II , 2002 .

[34]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[35]  M. Guddati,et al.  Continued fraction absorbing boundary conditions for convex polygonal domains , 2006 .

[36]  Robert V. Kohn,et al.  Cloaking via change of variables for the Helmholtz equation , 2010 .

[37]  Radakovič The theory of approximation , 1932 .

[38]  Herbert Stahl,et al.  Orthogonal polynomials with complex-valued weight function, II , 1986 .

[39]  Rob Remis,et al.  A Krylov Stability-Corrected Coordinate-Stretching Method to Simulate Wave Propagation in Unbounded Domains , 2012, SIAM J. Sci. Comput..

[40]  Stefan Güttel,et al.  Generalized Rational Krylov Decompositions with an Application to Rational Approximation , 2015, SIAM J. Matrix Anal. Appl..

[41]  V. Druskin,et al.  Optimal grids for anisotropic problems , 2006 .

[42]  Vadim Lisitsa,et al.  OPTIMAL DISCRETIZATION OF PML FOR ELASTICITY PROBLEMS , 2008 .

[43]  J. Cooper,et al.  Theory of Approximation , 1960, Mathematical Gazette.

[44]  Herbert Stahl,et al.  Orthogonal polynomials with complex-valued weight function, I , 1986 .

[45]  Cyrill B. Muratov,et al.  Optimal grid-based methods for thin film micromagnetics simulations , 2006, J. Comput. Phys..

[46]  Stefan Güttel,et al.  A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix functions , 2013 .

[47]  David H. Bailey,et al.  A Fortran 90-based multiprecision system , 1995, TOMS.

[48]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[49]  Vladimir Druskin,et al.  Optimal finite difference grids and rational approximations of the square root I. Elliptic problems , 2000 .

[50]  Sofia Davydycheva,et al.  An efficient finite‐difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media , 2003 .

[51]  J. Combes,et al.  Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions , 1971 .

[52]  Murthy N. Guddati,et al.  Padded continued fraction absorbing boundary conditions for dispersive waves , 2006 .

[53]  R. Varga Scientific Computations on Mathematical Problems and Conjectures , 1987 .

[54]  T. Stieltjes Recherches sur les fractions continues , 1995 .

[55]  Thomas Hagstrom,et al.  On generalized discrete PML optimized for propagative and evanescent waves , 2012, 1210.7862.

[56]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[57]  Olga Holtz,et al.  Structured Matrices, Continued Fractions, and Root Localization of Polynomials , 2009, SIAM Rev..