Tracking Seasonal Fluctuations in Land Water Storage Using Global Models and GRACE Satellites

[1]  P. Döll,et al.  Global‐scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites , 2014 .

[2]  M. Bierkens,et al.  Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources , 2013 .

[3]  P. Döll,et al.  Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration , 2014 .

[4]  Srinivas Bettadpur,et al.  High‐resolution CSR GRACE RL05 mascons , 2016 .

[5]  Petra Döll,et al.  Validation of a new global 30-min drainage direction map , 2002 .

[6]  Irma J. Terpenning,et al.  STL : A Seasonal-Trend Decomposition Procedure Based on Loess , 1990 .

[7]  Kevin W. Manning,et al.  The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins , 2011 .

[8]  B. Scanlon,et al.  Global evaluation of new GRACE mascon products for hydrologic applications , 2016 .

[9]  A. D. Roo,et al.  Global evaluation of runoff from ten state-of-the-art hydrological models , 2016 .

[10]  R. Reedy,et al.  Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data , 2018, Proceedings of the National Academy of Sciences.

[11]  S. Hagemann,et al.  Comparing large-scale hydrological models to observed runoff percentiles in Europe , 2012 .

[12]  David M. Lawrence,et al.  A GRACE‐based assessment of interannual groundwater dynamics in the Community Land Model , 2015 .

[13]  Sujay V. Kumar,et al.  Rivers and Floodplains as Key Components of Global Terrestrial Water Storage Variability , 2017 .

[14]  Petra Döll,et al.  Seasonal Water Storage Variations as Impacted by Water Abstractions: Comparing the Output of a Global Hydrological Model with GRACE and GPS Observations , 2014, Surveys in Geophysics.

[15]  Lukas Gudmundsson,et al.  The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata , 2017 .

[16]  Felipe J. Colón-González,et al.  Multimodel assessment of water scarcity under climate change , 2013, Proceedings of the National Academy of Sciences.

[17]  Petra Döll,et al.  Modelling Freshwater Resources at the Global Scale: Challenges and Prospects , 2016, Surveys in Geophysics.

[18]  Fang Zhao,et al.  Human impact parameterizations in global hydrological models improve estimates of monthly discharges and hydrological extremes: a multi-model validation study , 2018 .

[19]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[20]  T. Oki,et al.  Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results , 2011 .

[21]  T. Oki,et al.  Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network , 1998 .

[22]  Marc F. P. Bierkens,et al.  Sustainability of global water use: past reconstruction and future projections , 2014 .

[23]  Marc F. P. Bierkens,et al.  Global hydrology 2015: State, trends, and directions , 2015 .

[24]  A. Arneth,et al.  Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations , 2011 .

[25]  David M. Lawrence,et al.  Assessing a dry surface layer‐based soil resistance parameterization for the Community Land Model using GRACE and FLUXNET‐MTE data , 2014 .

[26]  Tyler D. Eddy,et al.  Assessing the impacts of 1.5 °C global warming - simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b) , 2016 .

[27]  Bailing Li,et al.  Comparison and Assessment of Three Advanced Land Surface Models in Simulating Terrestrial Water Storage Components over the United States , 2017 .

[28]  Valentina Krysanova,et al.  How the performance of hydrological models relates to credibility of projections under climate change , 2018 .

[29]  A. Hoekstra,et al.  Four billion people facing severe water scarcity , 2016, Science Advances.

[30]  T. Stacke,et al.  Validation of terrestrial water storage variations as simulated by different global numerical models with GRACE satellite observations. , 2016 .

[31]  G. Balsamo,et al.  The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA‐Interim reanalysis data , 2014 .

[32]  J. Kusche,et al.  Land water contribution to sea level from GRACE and Jason-1measurements , 2013 .

[33]  M. Watkins,et al.  Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons , 2015 .

[34]  Rolf Weingartner,et al.  Global monthly water stress: 2. Water demand and severity of water stress , 2011 .

[35]  Vincent Humphrey,et al.  Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes , 2016, Surveys in Geophysics.

[36]  M. Bierkens,et al.  Global depletion of groundwater resources , 2010 .

[37]  M. Rodell,et al.  Use of Gravity Recovery and Climate Experiment terrestrial water storage retrievals to evaluate model estimates by the Australian water resources assessment system , 2011 .

[38]  Dmitri Kavetski,et al.  A unified approach for process‐based hydrologic modeling: 1. Modeling concept , 2015 .