Long-haul DWDM transmission systems employing optical phase conjugation
暂无分享,去创建一个
H. de Waardt | D. van den Borne | S. Spalter | S. Jansen | G. Khoe | H. de Waardt | D. van den Borne | P. Krummrich | S. Spalter | P.M. Krummrich | S.L. Jansen | G.-D. Khoe
[1] K. Kikuchi,et al. Design theory of long-distance optical transmission systems using midway optical phase conjugation , 1997 .
[2] M M Fejer,et al. 1.5-microm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures. , 1998, Optics letters.
[3] Govind P. Agrawal,et al. Nonlinear Fiber Optics , 1989 .
[4] B. Spinnler,et al. Nonlinear phase noise reduction in DPSK transmission by optical phase conjugation , 2005 .
[5] Andrew D. Ellis,et al. 40 Gbit/s transmission over 406 km of NDSF using mid-span spectral inversion by four-wave-mixing in a 2 mm long semiconductor optical amplifier , 1997 .
[6] K. Kitamura,et al. Stoichiometric Mg:LiNbO(3) as an effective material for nonlinear optics. , 1998, Optics letters.
[7] Xuefeng Tang,et al. Nonlinear noise amplification in optical transmission systems with optical phase conjugation , 2005, Journal of Lightwave Technology.
[8] F. Matera,et al. Field demonstration of in-line all-optical wavelength conversion in a WDM dispersion managed 40-Gbit/s link , 2004, IEEE Journal of Selected Topics in Quantum Electronics.
[9] C. Wree,et al. RZ-DQPSK Format with High Spectral Efficiency and High Robustness Towards Fiber Nonlinearities , 2002, 2002 28TH European Conference on Optical Communication.
[10] S. Chandrasekhar,et al. Compensation of intra-channel nonlinearities in 40 Gb/s pseudo-linear systems using optical phase conjugation , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.
[11] Hideaki Okayama,et al. 1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain‐inverted LiNbO3 channel waveguide , 1993 .
[12] J. Gordon,et al. Phase noise in photonic communications systems using linear amplifiers. , 1990, Optics letters.
[13] Werner Rosenkranz,et al. Coding gain of FEC encoded 21.42Gb/s RZ/DQPSK using an electrical differential quaternary precoder , 2005 .
[14] H. Weber,et al. 80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer , 1999, IEEE Photonics Technology Letters.
[15] Shigeki Watanabe,et al. Simultaneous wavelength conversion and optical phase conjugation of 200 Gb/s (5x40 Gb/s) WDM signal using a highly nonlinear fiber four-wave mixer , 1997 .
[16] E. Riccardi,et al. 40 Gbit/s field transmission over standard fibre using midspan spectral inversion for dispersion compensation , 1999 .
[17] Patrick Leisching,et al. 10,200 km 22×2×10 Gbit/s RZ-DQPSK dense WDM transmission without inline dispersion compensation through optical phase conjugation , 2005 .
[18] Toshio Morioka,et al. Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103/spl times/10 Gbit/s) signals in PPLN waveguide , 2003 .
[19] Huug de Waardt,et al. 16/spl times/40 gb/s over 800 km of SSMF using mid-link spectral inversion , 2004, IEEE Photonics Technology Letters.
[20] R. M. Derosier,et al. 10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion , 1993, IEEE Photonics Technology Letters.
[21] G. Raybon,et al. Cancellation of all Kerr nonlinearities in long fiber spans using a LiNbO/sub 3/ phase conjugator and Raman amplification , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).
[22] R. Ludwig,et al. 80 Gbit/s transmission over 106 km standard-fiber using optical phase conjugation in a Sagnac-interferometer , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.
[23] K. Sugden,et al. Design and realization of dispersion slope compensators using distributed Gires-Tournois etalons , 2004, IEEE Photonics Technology Letters.
[24] S. Calabro,et al. 10,200 km 22/spl times/2/spl times/10 Gbit/s RZ-DQPSK dense WDM transmission without inline dispersion compensation through optical phase conjugation , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..
[25] P. V. Mamyshev,et al. Pulse-overlapped dispersion-manageddata transmission and intrachannel four-wave mixing , 1999 .
[26] Robert M. Jopson,et al. Compensation of fibre chromatic dispersion by spectral inversion , 1993 .
[27] Z. Wu,et al. Suppressing modulation instability in midway optical phase conjugation systems by using dispersion compensation , 2005 .
[28] H. de Waardt,et al. Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion , 2005, IEEE Photonics Technology Letters.
[29] S. Jansen,et al. 16 40 Gb / s Over 800 km of SSMF Using Mid-Link Spectral Inversion , 2004 .
[30] I. Brener,et al. Polarization-insensitive parametric wavelength converter based on cascaded nonlinearities in LiNbO/sub 3/ waveguides , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).
[31] H. de Waardt,et al. Experimental comparison of optical phase conjugation and DCF aided DWDM 2x10.7Gbit/s DWPSK transmission , 2005 .
[32] S. Yoo. Wavelength conversion technologies for WDM network applications , 1996 .
[33] Shigeki Watanabe,et al. Interband wavelength conversion of 320 Gb/s (32/spl times/10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).
[34] A Yariv,et al. Compensation for channel dispersion by nonlinear optical phase conjugation. , 1979, Optics letters.
[35] Hoon Kim,et al. Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise , 2003, IEEE Photonics Technology Letters.
[36] Xuefeng Tang,et al. Suppressing modulation instability in midway optical phase conjugation systems by using dispersion compensation , 2005, IEEE Photonics Technology Letters.
[37] Takashi Saida,et al. Mode multiplexing in optical frequency mixers. , 2004, Optics letters.
[38] S. Chandrasekhar,et al. Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation , 2005, Journal of Lightwave Technology.
[40] A. Gnauck,et al. Wavelength division multiplexed transmission over standard single mode fiber using polarization insensitive signal conjugation in highly nonlinear optical fiber , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..
[41] R. Ludwig,et al. 40 Gbit/s transmission over 434 km standard fibre using polarisation independent mid-span spectral inversion , 1998 .
[42] S. J. B. Yoo,et al. Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding , 1996 .
[43] H. de Waardt,et al. The impact of asymmetric placement of a spectral inverter in a 40Gbit/s system , 2004 .
[44] C. Xie,et al. Reduction of soliton phase jitter by in-line phase conjugation. , 2003, Optics letters.
[45] W. Chujo,et al. 80 Gbit/s OTDM signal transmission over 208 km standard fibre using midspan optical phase conjugation based on four-wave mixing in semiconductor optical amplifiers , 2002 .
[46] Hideaki Okayama,et al. Photorefractive damage of LiNbO3 quasiphase matched wavelength converters , 2000 .
[47] D. V. Gapontsev,et al. Transmission of 40×42.7 Gbit/s over 5200 km UltraWave® fiber with terrestrial 100 km spans using turn-key ETDM transmitter and receiver , 2002 .
[48] Shigeki Watanabe,et al. Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation , 1996 .
[49] H. de Waardt,et al. Nonlinear phase noise degradation in ultra-long haul 2x10Gbit/sDWPSK transmission , 2005 .
[50] W. Sohler,et al. Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping , 2001 .
[51] H de Waardt,et al. Mixed data rate and format transmission (40-Gbit/s non-return-to-zero, 40-Gbit/s duobinary, and 10-Gbit/s non-return-to-zero) by mid-link spectral inversion. , 2004, Optics letters.