Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials.

Magnetic nanoparticles (MNPs) have been used in various areas, such as in the manufacture of bearings, seals, lubricants, heat carriers, and in printing, recording, and polishing media. [1] One of the rapidlydeveloping research subjects involving MNPs is their application in biological systems, including their application in magnetic resonance imaging (MRI), targeted drug delivery, rapid biological separation, biosensors, and magnetic hyperthermia therapy. [2] The exploration of the interaction between nanostructured materials and living systems is of fundamental and practical interest, and it opens new doors to novel interdisciplinaryresearch field, “nanobioscience”. MNPs exhibited great potential for in vitro and in vivo biomedical application, [3] and the biodistribution of MNPs is stronglyinfluenced bytheir size, charge, and surface chemistry. [4] Recentlypublished reports indicate that magnetic nanoparticles (or microparticles), Fe3O4, conjugated with various targeting molecules or antibodies, can be used to target specific cells in vitro. [5] However, the noncovalent surface modification of nanoparticles

[1]  Jinwoo Cheon,et al.  Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. , 2005, Journal of the American Chemical Society.

[2]  G. Sukhorukov,et al.  Magnetic targeting and cellular uptake of polymer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[3]  H. von Briesen,et al.  Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. , 2005, Biomaterials.

[4]  Donghoon Lee,et al.  Optical and MRI multifunctional nanoprobe for targeting gliomas. , 2005, Nano letters.

[5]  Jinwoo Cheon,et al.  Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. , 2005, Journal of the American Chemical Society.

[6]  Mingyuan Gao,et al.  One‐Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles , 2005 .

[7]  Hongzhe Sun,et al.  Transferrin-mediated gold nanoparticle cellular uptake. , 2005, Bioconjugate chemistry.

[8]  L. Rossi,et al.  Stöber synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[9]  M. Bawendi,et al.  Phosphine oxide polymer for water-soluble nanoparticles. , 2005, Journal of the American Chemical Society.

[10]  Jinkyu Lee,et al.  Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. , 2005, Angewandte Chemie.

[11]  Tim Liedl,et al.  Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. , 2005, Nano letters.

[12]  Hooisweng Ow,et al.  Bright and stable core-shell fluorescent silica nanoparticles. , 2005, Nano letters.

[13]  Weihong Tan,et al.  TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. , 2004, Chemical communications.

[14]  C. Barbé,et al.  Silica Particles: A Novel Drug‐Delivery System , 2004 .

[15]  R. Yuan,et al.  Novel potentiometric immunosensor for hepatitis B surface antigen using a gold nanoparticle-based biomolecular immobilization method. , 2004, Analytical biochemistry.

[16]  Thomas Nann,et al.  Einzelne Quantenpunkte in Siliciumdioxid‐Kugeln , 2004 .

[17]  Thomas Nann,et al.  Single quantum dots in spherical silica particles. , 2004, Angewandte Chemie.

[18]  Weihong Tan,et al.  Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[19]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[20]  Eli Ruckenstein,et al.  Water-Soluble Poly(acrylic acid) Grafted Luminescent Silicon Nanoparticles and Their Use as Fluorescent Biological Staining Labels , 2004 .

[21]  M. Lacroix,et al.  Relevance of Breast Cancer Cell Lines as Models for Breast Tumours: An Update , 2004, Breast Cancer Research and Treatment.

[22]  Zeev Rosenzweig,et al.  Superparamagnetic Fe2O3 Beads−CdSe/ZnS Quantum Dots Core−Shell Nanocomposite Particles for Cell Separation , 2004 .

[23]  Robert J. Lee,et al.  Synthesis and evaluation of a hematoporphyrin derivative in a folate receptor-targeted solid-lipid nanoparticle formulation. , 2004, Anticancer research.

[24]  Bing Xu,et al.  Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. , 2003, Journal of the American Chemical Society.

[25]  Z. J. Zhang,et al.  Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core , 2003 .

[26]  Eugen Katz,et al.  Magnetische Kontrolle elektrokatalytischer und bioelektrokatalytischer Prozesse , 2003 .

[27]  Itamar Willner,et al.  Magnetic control of electrocatalytic and bioelectrocatalytic processes. , 2003, Angewandte Chemie.

[28]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[29]  Ananth Annapragada,et al.  Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[30]  Alan P Koretsky,et al.  Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. , 2003, Blood.

[31]  Christina Graf,et al.  A General Method To Coat Colloidal Particles with Silica , 2003 .

[32]  Q. Pankhurst,et al.  TOPICAL REVIEW: Applications of magnetic nanoparticles in biomedicine , 2003 .

[33]  Shiuan Chen,et al.  Induction of aromatase (CYP19) expression in breast cancer cells through a nongenomic action of estrogen receptor alpha. , 2003, Cancer research.

[34]  C. Bárcena,et al.  APPLICATIONS OF MAGNETIC NANOPARTICLES IN BIOMEDICINE , 2003 .

[35]  A. Curtis,et al.  TOPICAL REVIEW: Functionalisation of magnetic nanoparticles for applications in biomedicine , 2003 .

[36]  R. Costo,et al.  The preparation of magnetic nanoparticles for applications in biomedicine , 2003 .

[37]  M. D. Alper,et al.  Detection of bacteria in suspension by using a superconducting quantum interference device , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  I. Willner,et al.  Magnetically amplified DNA assays (MADA): sensing of viral DNA and single-base mismatches by using nucleic acid modified magnetic particles. , 2003, Angewandte Chemie.

[39]  Hao Zeng,et al.  Exchange-coupled nanocomposite magnets by nanoparticle self-assembly , 2002, Nature.

[40]  Lutz Trahms,et al.  Magnetorelaxometry—a new binding specific detection method based on magnetic nanoparticles , 2002 .

[41]  N. Labhsetwar,et al.  Synthesis and Magnetic Characterization of Zinc Ferrite Nanoparticles with Different Environments: Powder, Colloidal Solution, and Zinc Ferrite−Silica Core−Shell Nanoparticles , 2002 .

[42]  M. Kishida,et al.  Novel Synthesis of Silica‐Coated Ferrite Nanoparticles Prepared Using Water‐in‐Oil Microemulsion , 2002 .

[43]  Ralph Weissleder,et al.  Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. , 2002, Bioconjugate chemistry.

[44]  Jean-Louis Viovy,et al.  Self-Assembled Magnetic Matrices for DNA Separation Chips , 2002, Science.

[45]  Younan Xia,et al.  Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach , 2002 .

[46]  W. Tan,et al.  Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. , 2001, Analytical chemistry.

[47]  C. Ross Patterned Magnetic Recording Media , 2001 .

[48]  Dieter Weller,et al.  Extremely High-Density Longitudinal Magnetic Recording Media , 2000 .

[49]  K. Fischer,et al.  Dye-Labeled Poly(organosiloxane) Microgels with Core−Shell Architecture , 1999 .

[50]  D. Limaye,et al.  Cytotoxicity of cadmium and characteristics of its transport in cardiomyocytes. , 1999, Toxicology and applied pharmacology.

[51]  Miguel A. Correa-Duarte,et al.  Control of Packing Order of Self-Assembled Monolayers of Magnetite Nanoparticles with and without SiO2 Coating by Microwave Irradiation , 1998 .

[52]  S. Richards,et al.  Late Relapsing Childhood Lymphoblastic Leukemia , 1998 .

[53]  R. Goyer Nutrition and metal toxicity. , 1995, The American journal of clinical nutrition.

[54]  Alfons van Blaaderen,et al.  Dispersions of Rhodamine-Labeled Silica Spheres: Synthesis, Characterization, and Fluorescence Confocal Scanning Laser Microscopy , 1994 .

[55]  H. Bengele,et al.  Biodistribution of an ultrasmall superparamagnetic iron oxide colloid, BMS 180549, by different routes of administration. , 1994, Magnetic resonance imaging.

[56]  Ralph Weissleder,et al.  Colloidal magnetic resonance contrast agents : effect of particle surface on biodistribution , 1993 .

[57]  A. Vrij,et al.  Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres , 1992 .

[58]  L. Josephson,et al.  The effects of iron oxides on proton relaxivity. , 1988, Magnetic resonance imaging.