On domain expertise-based roles in collaborative information retrieval

Collaborative information retrieval involves retrieval settings in which a group of users collaborates to satisfy the same underlying need. One core issue of collaborative IR models involves either supporting collaboration with adapted tools or developing IR models for a multiple-user context and providing a ranked list of documents adapted for each collaborator. In this paper, we introduce the first document-ranking model supporting collaboration between two users characterized by roles relying on different domain expertise levels. Specifically, we propose a two-step ranking model: we first compute a document-relevance score, taking into consideration domain expertise-based roles. We introduce specificity and novelty factors into language-model smoothing, and then we assign, via an Expectation-Maximization algorithm, documents to the best-suited collaborator. Our experiments employ a simulation-based framework of collaborative information retrieval and show the significant effectiveness of our model at different search levels.

[1]  C. Dube,et al.  Untangling the Web--the impact of Internet use on health care and the physician-patient relationship. , 2007, Patient education and counseling.

[2]  R. Evans European Centre for Disease Prevention and Control. , 2014, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[3]  Kalervo Järvelin,et al.  The Effects of Relevance Feedback Quality and Quantity in Interactive Relevance Feedback: A Simulation Based on User Modeling , 2006, ECIR.

[4]  Karen Wielhorski Teaching Remote Users How to Use Electronic Information Resources. , 1994 .

[5]  Chirag Shah,et al.  Algorithmic mediation for collaborative exploratory search , 2008, SIGIR '08.

[6]  Meredith Ringel Morris,et al.  Enhancing collaborative web search with personalization: groupization, smart splitting, and group hit-highlighting , 2008, CSCW.

[7]  Frederick Jelinek,et al.  Interpolated estimation of Markov source parameters from sparse data , 1980 .

[8]  Jacki O'Neill,et al.  A new tangible user interface for machine learning document review , 2010, Artificial Intelligence and Law.

[9]  Andreas Paepcke,et al.  TeamSearch: comparing techniques for co-present collaborative search of digital media , 2006, First IEEE International Workshop on Horizontal Interactive Human-Computer Systems (TABLETOP '06).

[10]  Preben Hansen,et al.  Collaborative Information Retrieval in an information-intensive domain , 2005, Inf. Process. Manag..

[11]  Mary Jo Rudd,et al.  Coping with Information Load: User Strategies and Implications for Librarians , 1986 .

[12]  Ryen W. White,et al.  Personalizing web search results by reading level , 2011, CIKM '11.

[13]  Amanda Spink,et al.  Exploration into stages in the information search process in online information retrieval: communication between users and intermediaries , 1992 .

[14]  Ryen W. White,et al.  Effects of expertise differences in synchronous social Q&A , 2012, SIGIR '12.

[15]  Ryen W. White,et al.  Characterizing the influence of domain expertise on web search behavior , 2009, WSDM '09.

[16]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[17]  Christoph Hölscher,et al.  Web search behavior of Internet experts and newbies , 2000, Comput. Networks.

[18]  Wai-Tat Fu,et al.  Exploratory information search by domain experts and novices , 2010, IUI '10.

[19]  Damon Horowitz,et al.  The anatomy of a large-scale social search engine , 2010, WWW '10.

[20]  Dan Morris,et al.  ClassSearch: facilitating the development of web search skills through social learning , 2011, CHI.

[21]  Stephen R. Marsland,et al.  Machine Learning - An Algorithmic Perspective , 2009, Chapman and Hall / CRC machine learning and pattern recognition series.

[22]  Giyeong Kim,et al.  Relationship between index term specificity and relevance judgment , 2006, Inf. Process. Manag..

[23]  Ryen W. White,et al.  Effects of community size and contact rate in synchronous social q&a , 2011, CHI.

[24]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[25]  Meredith Ringel Morris,et al.  Collaborative Search: Who, What, Where, When, Why, and How , 2010 .

[26]  S. Altan Erdem,et al.  The role of the Internet in physician–patient relationships: The issue of trust , 2006 .

[27]  D. Nichols,et al.  Collaborative browsing and visualization of the search process , 1996 .

[28]  Joemon M. Jose,et al.  CoFox: a visual collaborative browser , 2011, CIR '11.

[29]  Robert S. Taylor Question-Negotiation and Information Seeking in Libraries , 1968, Coll. Res. Libr..

[30]  Jack G. Conrad E-Discovery Revisited: A Broader Perspective for IR Researchers , 2007 .

[31]  John Grundy,et al.  Collaborative work with the World Wide Web: Adding CSCW support to a Web Browser , 1996 .

[32]  Eric Horvitz,et al.  SearchTogether: an interface for collaborative web search , 2007, UIST.

[33]  C. Mascaro,et al.  Collaborative Information Seeking in an Online Political Group Environment , 2010 .

[34]  Donna K. Harman,et al.  Novelty Detection: The TREC Experience , 2005, HLT.

[35]  Pablo Castells,et al.  Novelty and diversity metrics for recommender systems: Choice, discovery and relevance , 2011 .

[36]  Krisztian Balog,et al.  A User-Oriented Model for Expert Finding , 2011, ECIR.

[37]  Ingrid Hsieh-Yee,et al.  Effects of Search Experience and Subject Knowledge on the Search Tactics of Novice and Experienced Searchers. , 1993 .

[38]  Chirag Shah,et al.  Collaborative Information Seeking: The Art and Science of Making the Whole Greater than the Sum of All , 2012 .

[39]  Alan F. Smeaton,et al.  Synchronous Collaborative Information Retrieval: Techniques and Evaluation , 2009, ECIR.

[40]  Jianqiang Wang,et al.  A user study of relevance judgments for E-Discovery , 2010, ASIST.

[41]  Paul Over,et al.  The TREC interactive track: an annotated bibliography , 2001, Inf. Process. Manag..

[42]  Pertti Vakkari,et al.  Changes of search terms and tactics while writing a research proposal: A longitudinal case study , 2003, Inf. Process. Manag..

[43]  V. Podichetty,et al.  Assessment of internet use and effects among healthcare professionals: a cross sectional survey , 2006, Postgraduate Medical Journal.

[44]  Elizabeth D. Liddy,et al.  The effects of expertise and feedback on search term selection and subsequent learning , 2005, J. Assoc. Inf. Sci. Technol..

[45]  David M. Nichols,et al.  Browsing is a collaborative process , 1997, Inf. Process. Manag..

[46]  Ryen W. White,et al.  Evaluating implicit feedback models using searcher simulations , 2005, TOIS.

[47]  Peter J. Denning,et al.  Getting to "we" , 2008, CACM.

[48]  Abdigani Diriye,et al.  Session-based search with Querium , 2011 .

[49]  Bryce Allen,et al.  Topic Knowledge and Online Catalog Search Formulation , 1991, The Library Quarterly.

[50]  Kevyn Collins-Thompson,et al.  A Language Modeling Approach to Predicting Reading Difficulty , 2004, NAACL.

[51]  Chirag Shah,et al.  Coagmento: A Case Study in Designing a User-Centric Collaborative Information Seeking System , 2012 .

[52]  Paulo Lício de Geus,et al.  Kolline: a task-oriented system for collaborative information seeking , 2010, SIGDOC '10.

[53]  Pernilla Qvarfordt,et al.  Collaborative Information Seeking , 2009, Computer.

[54]  Michael B. Metzger Spotlight on critical thinking , 2006 .

[55]  Meredith Ringel Morris,et al.  Collaborative Web Search: Who, What, Where, When, and Why , 2009, Collaborative Web Search: Who, What, Where, When, and Why.

[56]  M. McMullan Patients using the Internet to obtain health information: how this affects the patient-health professional relationship. , 2006, Patient education and counseling.

[57]  Alan F. Smeaton,et al.  Division of labour and sharing of knowledge for synchronous collaborative information retrieval , 2010, Inf. Process. Manag..

[58]  A. Toomela Sometimes One is More Than Two: When Collaboration Inhibits Knowledge Construction , 2007, Integrative psychological & behavioral science.

[59]  James E. Pitkow,et al.  Characterizing Browsing Strategies in the World-Wide Web , 1995, Comput. Networks ISDN Syst..

[60]  Donna K. Harman,et al.  Overview of the TREC 2002 Novelty Track , 2002, TREC.

[61]  Wahiba Bahsoun,et al.  A Collaborative Document Ranking Model for a Multi-faceted Search , 2013, AIRS.

[62]  Ann Blandford,et al.  Patient information needs: pre- and post-consultation , 2006, Health Informatics J..

[63]  Alan F. Smeaton,et al.  Collaborative searching for video using the Fischlar system and a DiamondTouch table , 2006, First IEEE International Workshop on Horizontal Interactive Human-Computer Systems (TABLETOP '06).

[64]  Dan Morris,et al.  Understanding the potential for collaborative search technologies in clinical settings , 2011, CIR '11.

[65]  Margaret M. Barry,et al.  A literature review on health information-seeking behaviour on the web: a health consumer and health , 2011 .

[66]  H. H. Clark,et al.  References in Conversation Between Experts and Novices , 1987 .

[67]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[68]  Vagelis Hristidis,et al.  FACeTOR: cost-driven exploration of faceted query results , 2010, CIKM.

[69]  Ann Blandford,et al.  Social and interactional practices for disseminating current awareness information in an organisational setting , 2010, Inf. Process. Manag..

[70]  Chirag Shah,et al.  Report on the Second Workshop on Collaborative Information Seeking: New Orleans, 12 October, 2011 , 2012, Inf. Res..

[71]  Chirag Shah,et al.  Role-based results redistribution for collaborative information retrieval , 2010, Inf. Process. Manag..

[72]  Joemon M. Jose,et al.  Revisiting IR Techniques for Collaborative Search Strategies , 2009, ECIR.