Classifying Multifrequency Fully Polarimetric Imagery With Multiple Sources of Statistical Evidence and Contextual Information

This paper presents the use of a new distribution for fully polarimetric image classification. Several classification strategies are compared in order to assess the importance of a careful statistical modeling of the data and the complementary nature of the information provided by different frequencies. Spatial context, which is relevant in order to obtain good results with noisy data, is described by means of the multiclass Potts model, and an iterated conditional modes classification algorithm that employs pseudolikelihood is proposed. The data are described using multivariate Gaussian laws and fully multilook polarimetric distributions arising from the multiplicative model. L-band, C-band, and both bands are used to assess the influence of dimensionality on the classification. Contextual and pointwise maximum-likelihood classifications are compared using real data. Results show that both context and number of frequencies contribute for better classification products, and that, a careful statistical description of the data leads to improved results.

[1]  Fawwaz T. Ulaby,et al.  The Bayesian hierarchical classifier (BHC) and its application to short vegetation using multifrequency polarimetric SAR , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Laurent Ferro-Famil,et al.  Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier , 2001, IEEE Trans. Geosci. Remote. Sens..

[3]  Jong-Sen Lee,et al.  Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..

[4]  Jong-Sen Lee,et al.  Principal components transformation of multifrequency polarimetric SAR imagery , 1992, IEEE Trans. Geosci. Remote. Sens..

[5]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[6]  Gabriel Vasile,et al.  Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Francisco Cribari-Neto,et al.  Analysis of Minute Features in Speckled Imagery with Maximum Likelihood Estimation , 2004, EURASIP J. Adv. Signal Process..

[8]  Thomas L. Ainsworth,et al.  Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Ingram Olkin,et al.  Unbiased Estimation of Certain Correlation Coefficients , 1958 .

[10]  A. Frigessi,et al.  Fast Approximate Maximum a Posteriori Restoration of Multicolour Images , 1995 .

[11]  Pierfrancesco Lombardo,et al.  Optimum model-based segmentation techniques for multifrequency polarimetric SAR images of urban areas , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[13]  Parivash Lumsdon,et al.  Polarimetric classification of land cover for Glen Affric radar project , 2005 .

[14]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[15]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[16]  Jong-Sen Lee,et al.  Integration of optical and radar classifications for mapping pasture type in Western Australia , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Alejandro C. Frery,et al.  Improved estimation of clutter properties in speckled imagery , 2002 .

[18]  A. C. Frery,et al.  Classification of SAR images using a general and tractable multiplicative model , 2003 .

[19]  Carl W. Ramm,et al.  Correct Formation of the Kappa Coefficient of Agreement , 1987 .

[20]  Laurent Ferro-Famil,et al.  Scattering-model-based speckle filtering of polarimetric SAR data , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Ron Kwok,et al.  Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution , 1994 .

[22]  Maurizio Migliaccio,et al.  SAR Polarimetry to Observe Oil Spills , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Oscar H. Bustos,et al.  M-Estimators of Roughness and Scale for-Modelled SAR Imagery , 2002, EURASIP J. Adv. Signal Process..

[24]  A. Frery,et al.  Multifrequency Full Polarimetric SAR Classification with Multiple Sources of Statistical Evidence , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[25]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[26]  Alejandro C. Frery,et al.  The polarimetric 𝒢 distribution for SAR data analysis , 2005 .

[27]  C.F. Barnes,et al.  Late-Season Rural Land-Cover Estimation With Polarimetric-SAR Intensity Pixel Blocks and$sigma$-Tree-Structured Near-Neighbor Classifiers , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Julian Besag,et al.  Towards Bayesian image analysis , 1993 .

[29]  J. Kong,et al.  K-Distribution and Polarimetric Terrain Radar Clutter , 1990, Progress In Electromagnetics Research.

[30]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[31]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[32]  Ishuwa C. Sikaneta,et al.  Estimating the effective number of looks in interferometric SAR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[33]  L. Pizarro,et al.  M-estimators with asymmetric influence functions: the distribution case , 2006 .

[34]  S. Quegan,et al.  Statistical models for polarimetric data: consequences, testing and validity , 1995 .

[35]  Laurent Ferro-Famil,et al.  Unsupervised terrain classification preserving polarimetric scattering characteristics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Juliana Gambini,et al.  Polarimetric SAR Region Boundary Detection Using B-Spline Deformable Countours under the G^H Model , 2005, XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05).

[37]  Ridha Touzi,et al.  Segmentation of textured polarimetric SAR scenes by likelihood approximation , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Marta Mejail,et al.  Approximation of distributions for SAR Images: proposal, evaluation and practical consequences , 2001 .

[39]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[40]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Jong-Sen Lee,et al.  Statistical analysis and segmentation of multi-look SAR imagery using partial polarimetric data , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[42]  Julian Besag,et al.  Digital Image Processing: Towards Bayesian image analysis , 1989 .

[43]  Muni S. Srivastava On the Complex Wishart Distribution , 1965 .

[44]  Corina da Costa Freitas,et al.  A model for extremely heterogeneous clutter , 1997, IEEE Trans. Geosci. Remote. Sens..

[45]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[46]  Alejandro C. Frery,et al.  Improving estimation in speckled imagery , 2005, Comput. Stat..

[47]  K. Ranson,et al.  K-distribution for multi-look processed polarimetric SAR imagery , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.