BRANCHED CYCLIC COVERS AND FINITE TYPE INVARIANTS

This work identifies a class of moves on knots which translate to $m$-equivalences of the associated $p$-fold branched cyclic covers, for a fixed $m$ and any $p$ (with respect to the Goussarov-Habiro filtration.) These moves are applied to give a flexible (if specialised) construction of knots for which the Casson-Walker-Lescop invariant (for example) of their $p$-fold branched cyclic covers may be readily calculated, for any choice of $p$. In the second part of this paper, these operations are illustrated by some theorems concerning the relationship of knot invariants obtained from finite type three-manifold invariants, via the branched cyclic covering construction, with the finite type theory of knots.

[1]  J. Lieberum The LMO-invariant of 3-manifolds of rank one and the Alexander polynomial , 2000, math/0002040.

[2]  K. Habiro Claspers and finite type invariants of links. , 2000, math/0001185.

[3]  T. Stanford,et al.  A move on diagrams that generates S-equivalence of knots , 1999, math/9911005.

[4]  M. Goussarov Finite type invariants and n-equivalence of 3-manifolds , 1999 .

[5]  J. Murakami,et al.  A three-manifold invariant via the Kontsevich integral , 1999 .

[6]  J. Levine,et al.  Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism , 1999, math/9904106.

[7]  T. Stanford,et al.  On knot invariants which are not of finite type , 1999, math/9903057.

[8]  A. Kricker Covering Spaces over Claspered Knots , 1999, math/9901029.

[9]  S. Garoufalidis Signatures of links and finite type invariants of cyclic branched covers , 1998, math/9811021.

[10]  T. Stanford Vassiliev invariants and knots modulo pure braid subgroups , 1998, math/9805092.

[11]  P. Melvin,et al.  Finite type invariants of 3-manifolds , 1998, math/9805026.

[12]  J. Murakami,et al.  On a universal perturbative invariant of 3-manifolds , 1998 .

[13]  W. Lickorish,et al.  An Introduction to Knot Theory , 1997 .

[14]  N. Habegger,et al.  The Casson-Walker-Lescop Invariant as a Quantum 3-manifold Invariant , 1997, q-alg/9708029.

[15]  N. Habegger,et al.  The Alexander polynomial and finite type 3-manifold invariants , 1997, q-alg/9708002.

[16]  Katsuhiro Ishibe The Casson-Walker invariant for branched cyclic covers of Ssp 3 branched over a doubled knot , 1997 .

[17]  J. Levine,et al.  Finite type 3-manifold invariants and the structure of the Torelli group. I , 1996, q-alg/9603013.

[18]  C. Lescop Global surgery formula for the Casson-Walker invariant , 1995 .

[19]  M. Gusarov On n-equivalence of knots and invariants of finite degree , 1994 .

[20]  A. Davidow Casson's invariant and twisted double knots , 1994 .

[21]  David Mullins The generalized casson invariant for 2-fold branched covers of S3 and the Jones polynomial , 1993 .

[22]  Y. Ohyama A new numerical invariant of knots induced from their regular diagrams , 1990 .

[23]  Hitoshi Murakami,et al.  On a certain move generating link-homology , 1989 .

[24]  S. Matveev Generalized surgery of three-dimensional manifolds and representations of homology spheres , 1987 .

[25]  T. Kanenobu Examples on polynomial invariants of knots and links , 1986 .

[26]  J. Hoste The first coefficient of the Conway polynomial , 1985 .

[27]  C. Gordon Knots whose branched cyclic coverings have periodic homology , 1972 .

[28]  R. Fox,et al.  Free Differential Calculus III. Subgroups , 1956 .

[29]  Lebrecht Goeritz,et al.  Knoten und quadratische Formen , 1933 .

[30]  T. Ohtsuki A filtration of the set of integral homological 3-spheres. , 1998 .

[31]  Seifert Matrices FINITE TYPE INVARIANTS OF KNOTS VIA THEIR SEIFERT MATRICES , 1998 .

[32]  K. Ng Groups of ribbon knots , 1995 .

[33]  S. Kinoshita,et al.  On the homology group of branched cyclic covering spaces of links , 1960 .