Electron Collision Cross Sections for the Tetraethoxysilane Molecule and Electron Transport Coefficients in Tetraethoxysilane–O2 and Tetraethoxysilane–Ar Mixtures

A consistent set of low energy electron collision cross sections for tetraethoxysilane (TEOS) molecule has been derived from the measured electron transport coefficients (electron drift velocity W , density-normalized longitudinal diffusion coefficient ND L , ratio of the longitudinal diffusion coefficient to the electron mobility D L /µ, and Townsend first ionization coefficient α/ N ) in pure TEOS molecule and those calculated by using an electron swarm study and a two-term approximation of the Boltzmann equation for energy. The electron transport coefficients calculated using the derived set are consistent with the experimental data over a wide range of E / N values (ratio of the electric field E to the neutral number density N ). The present set of electron collision cross sections for the TEOS molecule, therefore, is the best available so far for quantitative numerical modeling plasma discharges for processing procedures with materials containing TEOS molecules. Electron transport coefficients in TEO...

[1]  Do Anh Tuan,et al.  Electron Collision Cross Sections for the Cl2 Molecule from Electron Transport Coefficients , 2011 .

[2]  Do Anh Tuan,et al.  Determination of the Vibrational Excitation Cross-section for the F2 Molecule in a Plasma Discharge Simulation , 2011 .

[3]  M. M. Sanagi,et al.  Preparation and characterization of a new sol–gel hybrid based tetraethoxysilane-polydimethylsiloxane as a stir bar extraction sorbent materials , 2011 .

[4]  Yoshiharu Nakamura,et al.  Electron swarm parameters in CF3I and a set of electron collision cross sections for the CF3I molecule , 2010 .

[5]  Markus Kraft,et al.  First-principles thermochemistry for silicon species in the decomposition of tetraethoxysilane. , 2009, The journal of physical chemistry. A.

[6]  M. Guzman,et al.  Plasma deposition of tetraethoxysilane on polycarbonate membrane for pervaporation of tetrafluoropropanol aqueous solution , 2009 .

[7]  N. Miyatake,et al.  Characteristics of monopole antenna plasmas for TEOS PECVD , 2008 .

[8]  Werner Boullart,et al.  Simulation of an Ar/Cl2 inductively coupled plasma: study of the effect of bias, power and pressure and comparison with experiments , 2008 .

[9]  Byung-Hoon Jeon Determination of electron collision cross-sections for the C3F8 molecule by using an electron swarm study , 2006 .

[10]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[11]  Robert Robson,et al.  Is the classical two-term approximation of electron kinetic theory satisfactory for swarms and plasmas? , 2003 .

[12]  C. Vallée,et al.  Optical emission spectra of TEOS and HMDSO derived plasmas used for thin film deposition , 2003 .

[13]  C. Winstead,et al.  Electron collision cross sections for tetraethoxysilane , 2002 .

[14]  C. Winstead,et al.  Electron transport properties and collision cross sections in C2F4 , 2001 .

[15]  K. Becker,et al.  Calculations of absolute electron-impact ionization cross sections for molecules of technological relevance using the DM formalism , 2001 .

[16]  H. Bolt,et al.  Plasma Processes and Film Deposition Using Tetraethoxysilane , 2000 .

[17]  G. Turban,et al.  Study of oxygen/tetraethoxysilane plasmas in a helicon reactor using optical emission spectroscopy and mass spectrometry , 2000 .

[18]  Basner Ralf,et al.  Electron Impact Ionization of Organic Silicon Compounds , 2000 .

[19]  T. Ohshima,et al.  Measurement of electron transport coefficients in tetraethoxysilane by a double-shutter drift tube method , 1996 .

[20]  T. Ohshima,et al.  Measurement of the Townsend first ionization coefficient in tetraethoxysilane and oxygen mixtures , 1996 .

[21]  I. Ohlídal,et al.  Plasma-enhanced chemical vapour deposition of thin films from tetraethoxysilane and methanol: optical properties and XPS analyses , 1996 .

[22]  T. Ohshima,et al.  Measurement of the Townsend first ionization coefficient in tetraethoxysilane , 1995 .

[23]  M. Kogoma,et al.  Synthesis of plasma-polymerized tetraethoxysilane and hexamethyldisiloxane films prepared by atmospheric pressure glow discharge , 1995 .

[24]  P. Haaland,et al.  Ion chemistry in tetraethylorthosilicate (C2H5O)4Si , 1993 .

[25]  C. Charles,et al.  Mass spectrometric study of tetraethoxysilane and tetraethoxysilane-oxygen plasmas in a diode type radio-frequency reactor , 1992 .

[26]  C. Pai,et al.  Downstream microwave plasma‐enhanced chemical vapor deposition of oxide using tetraethoxysilane , 1990 .

[27]  K. Satoh,et al.  Development of electron swarms in SF6 , 1990 .

[28]  Yoshiharu Nakamura,et al.  Electron transport parameters in argon and its momentum transfer cross section , 1988 .

[29]  R. Robson Generalized Einstein Relation and Negative Differential Conductivity in Gases , 1984 .

[30]  Y. Sakai,et al.  The development of electron avalanches in argon at high E/N values. I. Monte Carlo simulation , 1977 .

[31]  Y. Sakai,et al.  The development of electron avalanches in argon at high E/N values. II. Boltzmann equation analysis , 1977 .

[32]  J. Dutton,et al.  A survey of electron swarm data , 1975 .

[33]  J. Moruzzi,et al.  Ionization in mixtures of oxygen and carbon monoxide , 1973 .

[34]  H R Skullerud,et al.  The stochastic computer simulation of ion motion in a gas subjected to a constant electric field , 1968 .

[35]  A. Heylen Ionization coefficients and sparking voltages in argon and argon-ethane mixtures , 1968 .