On the Symbiosis between Model-Theoretic and Set-Theoretic Properties of Large Cardinals
暂无分享,去创建一个
[1] Jouko A. Väänänen,et al. On löWenheim-Skolem-Tarski numbers for Extensions of First order Logic , 2011, J. Math. Log..
[2] Jouko Väänänen,et al. Abstract Logic and Set Theory. I. Definability , 1979 .
[3] A. Mostowski. On a generalization of quantifiers , 1957 .
[4] Jouko Väänänen,et al. Reflection principles for the continuum , 2008 .
[5] S. Shelah,et al. δ-Logics and generalized quantifiers , 1976 .
[6] Azriel Levy. Basic set theory , 1979 .
[7] Jon Barwise,et al. Model-Theoretic Logics , 2016 .
[8] Ilijas Farah,et al. ABSOLUTENESS FOR UNIVERSALLY BAIRE SETS AND THE UNCOUNTABLE II , 2008 .
[9] Saharon Shelah,et al. Models with second order properties II. Trees with no undefined branches , 1978 .
[10] Saharon Shelah,et al. Saharon Shelah , 2008 .
[11] G. Fuhrken,et al. Skolem-type normal forms for first-order languages with a generalized quantifier , 1964 .
[12] Menachem Magidor. On the role of supercompact and extendible cardinals in logic , 1971 .
[13] A. G. Pinus,et al. Cardinality of models for theories in a calculus with a Härtig quantifier , 1978 .
[14] Joan Bagaria. C(n)-cardinals , 2012, Arch. Math. Log..
[15] Perlindström. First Order Predicate Logic with Generalized Quantifiers , 1966 .