Spiral periodic structure inside chaotic region in parameter-space of a Chua circuit

In this letter we investigate, via numerical simulations, the parameter-space of the set of autonomous first-order differential equations of a Chua circuit. We show that this parameter-space presents self-organized periodic structures immersed in a chaotic region, forming a single spiral structure that coils up around a focal point. Additionally, bifurcation diagrams are used to show that those periodic structures also organize themselves in period-adding cascades, along specific directions that point towards this same focal point. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  Mohammad Saleh Tavazoei,et al.  Experimental study of a chaos‐based communication system in the presence of unknown transmission delay , 2010, Int. J. Circuit Theory Appl..

[2]  Paulo C. Rech,et al.  Theoretical and experimental time series analysis of an inductorless Chua’s circuit , 2007 .

[3]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[4]  Marco Monti,et al.  Characterization of the Rössler System in Parameter Space , 2007, Int. J. Bifurc. Chaos.

[5]  György Cserey,et al.  Hardware implementation of CNN architecture-based test bed for studying synchronization phenomenon in oscillatory and chaotic networks , 2009 .

[6]  Laurent Larger,et al.  Communicating with optical hyperchaos: information encryption and decryption in delayed nonlinear feedback systems. , 2001, Physical review letters.

[7]  Michael Peter Kennedy,et al.  The Colpitts oscillator: Families of periodic solutions and their bifurcations , 2000, Int. J. Bifurc. Chaos.

[8]  Chuan-Kuei Huang,et al.  Implementation of chaotic secure communication systems based on OPA circuits , 2005 .

[9]  Laurent Larger,et al.  Communicating with Optical Hyperchaos , 2001 .

[10]  M S Baptista,et al.  Experimental observation of a complex periodic window. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Paulo C. Rech,et al.  Self-similar structures in a 2D parameter-space of an inductorless Chua's circuit , 2008 .

[12]  L. Chua,et al.  GLOBAL BIFURCATION ANALYSIS OF THE DOUBLE SCROLL CIRCUIT , 1991 .

[13]  J. Gallas,et al.  Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. , 2008, Physical review letters.

[14]  Leon O. Chua,et al.  Chua's circuit 10 years later , 1994, Int. J. Circuit Theory Appl..

[15]  Yuan Ji,et al.  Chaotic communication systems in the presence of parametric uncertainty and mismatch , 2008 .

[16]  Raymond Kapral,et al.  Bifurcation phenomena near homoclinic systems: A two-parameter analysis , 1984 .

[17]  J. G. Freire,et al.  Relative abundance and structure of chaotic behavior: the nonpolynomial Belousov-Zhabotinsky reaction kinetics. , 2009, The Journal of chemical physics.

[18]  Luis Fernando Mello,et al.  Inductorless Chua's Circuit: Experimental Time Series Analysis , 2007 .

[19]  E. E. García-Guerrero,et al.  Synchronization of Chua’s circuits with multi-scroll attractors: Application to communication , 2009 .

[20]  Holokx A. Albuquerque,et al.  Complex periodic structures in bi-dimensional bifurcation diagrams of a RLC circuit model with a nonlinear NDC device , 2009 .