A Survey of Forbidden Configuration Results

Let $F$ be a $k\times \ell$ (0,1)-matrix. We say a (0,1)-matrix $A$ has $F$ as a configuration if there is a submatrix of $A$ which is a row and column permutation of $F$. In the language of sets, a configuration is a trace and in the language of hypergraphs a configuration is a subhypergraph . Let $F$ be a given $k\times \ell$ (0,1)-matrix. We define a matrix to be simple if it is a (0,1)-matrix with no repeated columns. The matrix $F$ need not be simple. We define $\hbox{forb}(m,F)$ as the maximum number of columns of any simple $m$-rowed matrix $A$ which do not contain $F$ as a configuration. Thus if $A$ is an $m\times n$ simple matrix which has no submatrix which is a row and column permutation of $F$ then $n\le\hbox{forb}(m,F)$. Or alternatively if $A$ is an $m\times (\hbox{forb}(m,F)+1)$ simple matrix then $A$ has a submatrix which is a row and column permutation of $F$. We call $F$ a forbidden configuration .  The fundamental result is due to Sauer, Perles and Shelah, Vapnik and Chervonenkis. For $K_k$ denoting the $k\times 2^k$ submatrix of all (0,1)-columns on $k$ rows, then $\hbox{forb}(m,K_k)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots \binom{m}{0}$. We seek asymptotic results for $\hbox{forb}(m,F)$ for a fixed $F$ and as $m$ tends to infinity . A conjecture of Anstee and Sali predicts the asymptotically best constructions from which to derive the asymptotics of $\hbox{forb}(m,F)$. The conjecture has helped guide the research and has been verified for $k\times \ell$ $F$ with $k=1,2,3$ and for simple $F$ with $k=4$ as well as other cases including $\ell=1,2$. We also seek exact values for $\hbox{forb}(m,F)$.

[1]  Richard P. Anstee,et al.  Genetic Algorithms Applied to Problems of Forbidden Configurations , 2011, Electron. J. Comb..

[2]  Dhruv Mubayi,et al.  Set systems without a simplex or a cluster , 2010, Comb..

[3]  AhlswedeRudolf,et al.  The Complete Intersection Theorem for Systems of Finite Sets , 1997 .

[4]  József Balogh,et al.  Minimum Difference Representations of Graphs , 2009, Graphs Comb..

[5]  János Pach,et al.  On disjointly representable sets , 1984, Comb..

[6]  Roman Smolensky Well-known bound for the VC-dimension made easy , 2005, computational complexity.

[7]  P. Erdös,et al.  Families of finite sets in which no set is covered by the union ofr others , 1985 .

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  Richard P. Anstee,et al.  Sperner families of bounded VC-dimension , 1997, Discret. Math..

[10]  Damaraju Raghavarao,et al.  Block Designs: Analysis, Combinatorics and Applications , 2005 .

[11]  Richard P. Anstee,et al.  Matrices with forbidden subconfigurations , 1985, Discret. Math..

[12]  Balázs Patkós,et al.  Traces of Uniform Families of Sets , 2009, Electron. J. Comb..

[13]  Ervin Györi,et al.  An Extremal Problem on Sparse 0-1 Matrices , 1991, SIAM J. Discret. Math..

[14]  Zoltán Füredi,et al.  The Maximum Size of 3-Uniform Hypergraphs Not Containing a Fano Plane , 2000, J. Comb. Theory, Ser. B.

[15]  Niranjan Balachandran,et al.  Forbidden configurations and Steiner designs , 2012, Des. Codes Cryptogr..

[16]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[17]  Richard P. Anstee,et al.  Forbidden configurations: Induction and linear algebra , 1995, Eur. J. Comb..

[18]  Zoltán Füredi,et al.  Color critical hypergraphs and forbidden configurations , 2005 .

[19]  Richard P. Anstee,et al.  Pairwise intersections and forbidden configurations , 2006, Eur. J. Comb..

[20]  H. J. Ryser,et al.  A fundamental matrix equation for finite sets , 1972 .

[21]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[22]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[23]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[24]  Zoltán Füredi,et al.  Davenport-Schinzel theory of matrices , 1992, Discret. Math..

[25]  János Körner,et al.  On the Extremal Combinatorics of the Hamming Space , 1994, J. Comb. Theory, Ser. A.

[26]  Z. Füredi Surveys in Combinatorics, 1991: “Turán Type Problems” , 1991 .

[27]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[28]  Miklós Simonovits,et al.  Triple Systems Not Containing a Fano Configuration , 2005, Comb. Probab. Comput..

[29]  Jeff Yu Lei,et al.  A Survey of Binary Covering Arrays , 2011, Electron. J. Comb..

[30]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[31]  Benny Sudakov,et al.  Disjoint representability of sets and their complements , 2005, J. Comb. Theory, Ser. B.

[32]  Gábor Tardos,et al.  Excluded permutation matrices and the Stanley-Wilf conjecture , 2004, J. Comb. Theory, Ser. A.

[33]  Dhruv Mubayi,et al.  On the VC-dimension of uniform hypergraphs , 2007 .

[34]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[35]  Béla Bollobás,et al.  Unavoidable Traces Of Set Systems , 2005, Comb..

[36]  P. Erdös On the structure of linear graphs , 1946 .

[37]  Richard P. Anstee,et al.  Small forbidden configurations V: Exact bounds for 4 × 2 cases , 2011 .

[38]  Mark G. Karpovsky,et al.  Coordinate density of sets of vectors , 1978, Discret. Math..

[39]  Richard P. Anstee,et al.  Small Forbidden Configurations , 1997, Graphs Comb..

[40]  A. Hoffman,et al.  Totally-Balanced and Greedy Matrices , 1985 .

[41]  Richard P. Anstee,et al.  Small Forbidden Configurations II , 2000, Electron. J. Comb..

[42]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[43]  Richard P. Anstee,et al.  On the density of sets of divisors , 1995, Discret. Math..

[44]  Richard P. Anstee,et al.  Forbidden configurations and repeated induction , 2011, Discret. Math..

[45]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[46]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[47]  Richard P. Anstee,et al.  Evidence for a forbidden configuration conjecture: One more case solved , 2012, Discret. Math..

[48]  室 章治郎 Michael R.Garey/David S.Johnson 著, "COMPUTERS AND INTRACTABILITY A guide to the Theory of NP-Completeness", FREEMAN, A5判変形判, 338+xii, \5,217, 1979 , 1980 .

[49]  Peter Frankl,et al.  Some best possible bounds concerning the traces of finite sets , 1994, Graphs Comb..

[50]  Boting Yang,et al.  Sauer's Bound for a Notion of Teaching Complexity , 2012, ALT.

[51]  Richard P. Anstee,et al.  Forbidden Configurations: Exact Bounds Determined by Critical Substructures , 2010, Electron. J. Comb..

[52]  Peter Frankl,et al.  On the Trace of Finite Sets , 1983, J. Comb. Theory, Ser. A.

[53]  Oleg Pikhurko An exact Turán result for the generalized triangle , 2008, Comb..

[54]  Joel H. Spencer,et al.  Families of k-independent sets , 1973, Discret. Math..

[55]  Richard P. Anstee,et al.  Properties of (0,1)-Matrices With Forbidden Configurations , 1980 .

[56]  János Körner On the Extremal Combinatorics of the Hamming Space , 1995, J. Comb. Theory, Ser. A.

[57]  Zolt'an Furedi,et al.  Optimal Multivalued Shattering , 2011, 1109.1748.

[58]  D. Kleitman On a combinatorial conjecture of Erdös , 1966 .

[59]  Richard P. Anstee,et al.  A forbidden configuration theorem of Alon , 1988, J. Comb. Theory, Ser. A.

[60]  Tomasz Luczak,et al.  Coloring dense graphs via VC-dimension , 2010, 1007.1670.

[61]  Richard P. Anstee Properties of (0, 1)-Matrices with No Triangles , 1980, J. Comb. Theory, Ser. A.

[62]  Robert E. Bixby,et al.  Short Cocircuits in Binary Matroids , 1987, Eur. J. Comb..

[63]  J. Michael Steele,et al.  Existence of Submatrices with All Possible Columns , 1978, Journal of combinatorial theory. Series A.

[64]  Lajos Rónyai,et al.  Some Combinatorial Applications of Gröbner Bases , 2011, CAI.

[65]  Rudolf Ahlswede,et al.  Counterexample to the Frankl-Pach conjecture for uniform, dense families , 1997, Comb..

[66]  János Pach,et al.  On the Number of Sets in a Null t-Design , 1983, Eur. J. Comb..

[67]  P. Frankl,et al.  Bounding one-way differences , 1987, Graphs Comb..

[68]  Noga Alon,et al.  On the density of sets of vectors , 1983, Discret. Math..

[69]  Rudolf Ahlswede,et al.  The Complete Intersection Theorem for Systems of Finite Sets , 1997, Eur. J. Comb..

[70]  David Haussler,et al.  Epsilon-nets and simplex range queries , 1986, SCG '86.

[71]  Richard P. Anstee,et al.  General Forbidden Configuration Theorems , 1985, J. Comb. Theory, Ser. A.

[72]  Richard P. Anstee,et al.  Characterizations of Totally Balanced Matrices , 1984, J. Algorithms.

[73]  Richard P. Anstee,et al.  Forbidden Submatrices: Some New Bounds and Constructions , 2013, Electron. J. Comb..

[74]  Zoltán Füredi,et al.  Traces of finite sets: extremal problems and geometric applications , 1994 .

[75]  Richard P. Anstee,et al.  Linear algebra methods for forbidden configurations , 2011, Comb..

[76]  Gábor Tardos,et al.  On 0-1 matrices and small excluded submatrices , 2005, J. Comb. Theory, Ser. A.

[77]  Richard P. Anstee,et al.  Properties of (0, 1)-Matrices without Certain Configurations , 1981, J. Comb. Theory, Ser. A.

[78]  Amos Fiat,et al.  VC-Dimension and Shortest Path Algorithms , 2011, ICALP.

[79]  Yi Zhao,et al.  Forbidding Complete Hypergraphs as Traces , 2007, Graphs Comb..

[80]  Richard P. Anstee,et al.  Forbidden Configurations and Product Constructions , 2014, Graphs Comb..

[81]  Lajos Rónyai,et al.  Gröbner Bases for Complete Uniform Families , 2003 .

[82]  Richard P. Anstee,et al.  Two refinements of the bound of Sauer, Perles and Shelah, and of Vapnik and Chervonenkis , 2010, Discret. Math..