An Evolutionary Algorithm with Double-Level Archives for Multiobjective Optimization

Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problem-level and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed.

[1]  Lei Zhang,et al.  An orthogonal multi-objective evolutionary algorithm with lower-dimensional crossover , 2009, 2009 IEEE Congress on Evolutionary Computation.

[2]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[3]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .

[4]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[5]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Interactive Approaches , 2008, Multiobjective Optimization.

[6]  Kay Chen Tan,et al.  A Multiobjective Memetic Algorithm Based on Particle Swarm Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  M. Yamamura,et al.  Multi-parent recombination with simplex crossover in real coded genetic algorithms , 1999 .

[8]  R. A. Groeneveld,et al.  Practical Nonparametric Statistics (2nd ed). , 1981 .

[9]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[10]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[11]  Bernhard Sendhoff,et al.  Adapting Weighted Aggregation for Multiobjective Evolution Strategies , 2001, EMO.

[12]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[13]  Gary G. Yen,et al.  PSO-Based Multiobjective Optimization With Dynamic Population Size and Adaptive Local Archives , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[15]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[16]  Ponnuthurai N. Suganthan,et al.  Multi-objective evolutionary programming without non-domination sorting is up to twenty times faster , 2009, 2009 IEEE Congress on Evolutionary Computation.

[17]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[18]  David J. Groggel,et al.  Practical Nonparametric Statistics , 2000, Technometrics.

[19]  Shengxiang Yang,et al.  Shift-Based Density Estimation for Pareto-Based Algorithms in Many-Objective Optimization , 2014, IEEE Transactions on Evolutionary Computation.

[20]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[21]  Jiannong Cao,et al.  Multiple Populations for Multiple Objectives: A Coevolutionary Technique for Solving Multiobjective Optimization Problems , 2013, IEEE Transactions on Cybernetics.

[22]  Peter J. Fleming,et al.  Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[23]  Qingfu Zhang,et al.  Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective Subproblems , 2014, IEEE Transactions on Evolutionary Computation.

[24]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[25]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[26]  Gary G. Yen,et al.  Dynamic Multiple Swarms in Multiobjective Particle Swarm Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[27]  Murat Köksalan,et al.  A Territory Defining Multiobjective Evolutionary Algorithms and Preference Incorporation , 2010, IEEE Transactions on Evolutionary Computation.

[28]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[29]  Evan J. Hughes,et al.  Many-objective directed evolutionary line search , 2011, GECCO '11.

[30]  T. Back,et al.  Evolutionary algorithms for real world applications [Application Notes] , 2008, IEEE Computational Intelligence Magazine.

[31]  E. Hughes Multiple single objective Pareto sampling , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[32]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[33]  Ruichen Jin,et al.  On Sequential Sampling for Global Metamodeling in Engineering Design , 2002, DAC 2002.

[34]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[35]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[36]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[37]  Jouni Lampinen,et al.  An Extension of Generalized Differential Evolution for Multi-objective Optimization with Constraints , 2004, PPSN.

[38]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Noninteractive Approaches , 2008, Multiobjective Optimization.

[39]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[40]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[41]  Peter J. Fleming,et al.  Generalized Decomposition , 2013, EMO.

[42]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[43]  Jun Zhang,et al.  Evolutionary Computation Meets Machine Learning: A Survey , 2011, IEEE Computational Intelligence Magazine.

[44]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[45]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[46]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[47]  ZhangJun,et al.  Evolutionary Computation Meets Machine Learning , 2011 .

[48]  Peter J. Bentley,et al.  Finding Acceptable Solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms , 1998 .

[49]  Qingfu Zhang,et al.  Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[50]  Kaisa Miettinen,et al.  On scalarizing functions in multiobjective optimization , 2002, OR Spectr..

[51]  Yaochu Jin,et al.  Dynamic Weighted Aggregation for evolutionary multi-objective optimization: why does it work and how? , 2001 .

[52]  B. V. Babu,et al.  Multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor , 2005 .

[53]  Evan J. Hughes,et al.  MSOPS-II: A general-purpose Many-Objective optimiser , 2007, 2007 IEEE Congress on Evolutionary Computation.

[54]  Qingfu Zhang,et al.  Hybridization of Decomposition and Local Search for Multiobjective Optimization , 2014, IEEE Transactions on Cybernetics.

[55]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[56]  Peter J. Fleming,et al.  Towards Understanding the Cost of Adaptation in Decomposition-Based Optimization Algorithms , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[57]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[58]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[59]  Mitsuo Gen,et al.  Genetic algorithms and engineering design , 1997 .

[60]  Thomas Bäck,et al.  Evolutionary Algorithms for Real World Applications , 2008 .

[61]  Shiu Yin Yuen,et al.  A Multiobjective Evolutionary Algorithm That Diversifies Population by Its Density , 2012, IEEE Transactions on Evolutionary Computation.

[62]  Yuping Wang,et al.  A clustering multi-objective evolutionary algorithm based on orthogonal and uniform design , 2009, 2009 IEEE Congress on Evolutionary Computation.

[63]  R. Lyndon While,et al.  A Scalable Multi-objective Test Problem Toolkit , 2005, EMO.