Deploying a quantum annealing processor to detect tree cover in aerial imagery of California

Quantum annealing is an experimental and potentially breakthrough computational technology for handling hard optimization problems, including problems of computer vision. We present a case study in training a production-scale classifier of tree cover in remote sensing imagery, using early-generation quantum annealing hardware built by D-wave Systems, Inc. Beginning within a known boosting framework, we train decision stumps on texture features and vegetation indices extracted from four-band, one-meter-resolution aerial imagery from the state of California. We then impose a regulated quadratic training objective to select an optimal voting subset from among these stumps. The votes of the subset define the classifier. For optimization, the logical variables in the objective function map to quantum bits in the hardware device, while quadratic couplings encode as the strength of physical interactions between the quantum bits. Hardware design limits the number of couplings between these basic physical entities to five or six. To account for this limitation in mapping large problems to the hardware architecture, we propose a truncation and rescaling of the training objective through a trainable metaparameter. The boosting process on our basic 108- and 508-variable problems, thus constituted, returns classifiers that incorporate a diverse range of color- and texture-based metrics and discriminate tree cover with accuracies as high as 92% in validation and 90% on a test scene encompassing the open space preserves and dense suburban build of Mill Valley, CA.

[1]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[2]  Hartmut Neven,et al.  NIPS 2009 Demonstration: Binary Classification using Hardware Implementation of Quantum Annealing , 2009 .

[3]  Hartmut Neven,et al.  Training a Large Scale Classifier with the Quantum Adiabatic Algorithm , 2009, ArXiv.

[4]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[5]  F. Spedalieri,et al.  Reexamination of the evidence for entanglement in a quantum annealer , 2015, 1506.03539.

[6]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[7]  S. Knysh,et al.  Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.

[8]  Sanmay Das,et al.  Filters, Wrappers and a Boosting-Based Hybrid for Feature Selection , 2001, ICML.

[9]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[10]  Daniel A. Lidar,et al.  Probing for quantum speedup in spin-glass problems with planted solutions , 2015, 1502.01663.

[11]  Manuela Herman,et al.  Quantum Computing: A Gentle Introduction , 2011 .

[12]  Steven H. Adachi,et al.  Application of Quantum Annealing to Training of Deep Neural Networks , 2015, ArXiv.

[13]  Fabián A. Chudak,et al.  Experimental determination of Ramsey numbers. , 2012, Physical Review Letters.

[14]  Daniel A. Lidar,et al.  Quantum adiabatic machine learning , 2011, Quantum Inf. Process..

[15]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[16]  Bryan O'Gorman,et al.  A case study in programming a quantum annealer for hard operational planning problems , 2014, Quantum Information Processing.

[17]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[18]  J. A. d'Auriac,et al.  The random field Ising model : algorithmic complexity and phase transition , 1985 .

[19]  Christoph Koch,et al.  Multiple Query Optimization on the D-Wave 2X Adiabatic Quantum Computer , 2015, Proc. VLDB Endow..

[20]  Supratik Mukhopadhyay,et al.  A Semiautomated Probabilistic Framework for Tree-Cover Delineation From 1-m NAIP Imagery Using a High-Performance Computing Architecture , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[22]  D. Zhao,et al.  A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres , 2013, Nature Communications.

[23]  Daniel A. Lidar,et al.  Performance of two different quantum annealing correction codes , 2015, Quantum Inf. Process..

[24]  Supratik Mukhopadhyay,et al.  DeepSat: a learning framework for satellite imagery , 2015, SIGSPATIAL/GIS.

[25]  Vasil S. Denchev,et al.  Training a Binary Classifier with the Quantum Adiabatic Algorithm , 2008, 0811.0416.

[26]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[27]  Leen-Kiat Soh,et al.  Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices , 1999, IEEE Trans. Geosci. Remote. Sens..

[28]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[29]  Colin P. Williams,et al.  A Near-Term Quantum Computing Approach for Hard Computational Problems in Space Exploration , 2012, 1204.2821.

[30]  Alán Aspuru-Guzik,et al.  Bayesian network structure learning using quantum annealing , 2014, The European Physical Journal Special Topics.

[31]  Daniel A. Lidar,et al.  Simulated-quantum-annealing comparison between all-to-all connectivity schemes , 2016, 1603.03755.

[32]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[33]  Kesheng Wu,et al.  Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer , 2015, IEEE Journal of Selected Topics in Signal Processing.

[34]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  S. V. N. Vishwanathan,et al.  Robust Classification with Adiabatic Quantum Optimization , 2012, ICML.

[36]  Daniel A. Lidar,et al.  Quantum annealing correction with minor embedding , 2015, 1507.02658.

[37]  Matthias Troyer,et al.  Optimised simulated annealing for Ising spin glasses , 2014, Comput. Phys. Commun..

[38]  R. Biswas,et al.  A quantum annealing approach for fault detection and diagnosis of graph-based systems , 2014, The European Physical Journal Special Topics.

[39]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[40]  M. Luckiesh,et al.  On The Growth and Decay of Color Sensations in Flicker Photometry , 1914 .

[41]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.