Beware of docking!

[1]  Jianfeng Pei,et al.  Systems biology brings new dimensions for structure-based drug design. , 2014, Journal of the American Chemical Society.

[2]  Baoxue Yang,et al.  Developing Hypothetical Inhibition Mechanism of Novel Urea Transporter B Inhibitor , 2014, Scientific Reports.

[3]  Torsten Schwede,et al.  Modelling three-dimensional protein structures for applications in drug design. , 2014, Drug discovery today.

[4]  Tzu-Chieh Hung,et al.  In Silico Investigation of Traditional Chinese Medicine Compounds to Inhibit Human Histone Deacetylase 2 for Patients with Alzheimer's Disease , 2014, BioMed research international.

[5]  Calvin Yu-Chian Chen,et al.  Lead Screening for HIV-1 Integrase (IN) Inhibited by Traditional Chinese Medicine , 2014, BioMed research international.

[6]  Hung-Jin Huang,et al.  Lead Discovery for Alzheimer's Disease Related Target Protein RbAp48 from Traditional Chinese Medicine , 2014, BioMed research international.

[7]  Kuan-Chung Chen,et al.  Potential Protein Phosphatase 2A Agents from Traditional Chinese Medicine against Cancer , 2014, Evidence-based complementary and alternative medicine : eCAM.

[8]  Calvin Yu-Chian Chen,et al.  May disordered protein cause serious drug side effect? , 2014, Drug discovery today.

[9]  Calvin Yu-Chian Chen,et al.  Discovery of novel insomnia leads from screening traditional Chinese medicine database , 2014, Journal of biomolecular structure & dynamics.

[10]  Edward W. Lowe,et al.  Computational Methods in Drug Discovery , 2014, Pharmacological Reviews.

[11]  Deok-Soo Kim,et al.  GalaxyDock2: Protein–ligand docking using beta‐complex and global optimization , 2013, J. Comput. Chem..

[12]  W. Tou,et al.  How to design a drug for the disordered proteins? , 2013, Drug discovery today.

[13]  Sally R. Ellingson,et al.  VinaMPI: Facilitating multiple receptor high‐throughput virtual docking on high‐performance computers , 2013, J. Comput. Chem..

[14]  Shoshana D. Brown,et al.  Discovery of new enzymes and metabolic pathways using structure and genome context , 2013, Nature.

[15]  Cheng Luo,et al.  Computational methods for drug design and discovery: focus on China , 2013, Trends in Pharmacological Sciences.

[16]  Reed B. Jacob,et al.  DockoMatic 2.0: High Throughput Inverse Virtual Screening and Homology Modeling , 2013, J. Chem. Inf. Model..

[17]  Calvin Yu-Chian Chen,et al.  A novel integrated framework and improved methodology of computer-aided drug design. , 2013, Current topics in medicinal chemistry.

[18]  Patricia C. Babbitt,et al.  Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily , 2013, Proceedings of the National Academy of Sciences.

[19]  Christopher L. McClendon,et al.  Substrate and Inhibitor-induced Dimerization and Cooperativity in Caspase-1 but Not Caspase-3* , 2013, The Journal of Biological Chemistry.

[20]  Petra Schneider,et al.  Chemically Advanced Template Search (CATS) for Scaffold-Hopping and Prospective Target Prediction for ‘Orphan’ Molecules , 2013, Molecular informatics.

[21]  Su-Sen Chang,et al.  Drug Design for Neuropathic Pain Regulation from Traditional Chinese Medicine , 2013, Scientific Reports.

[22]  Hongyi Zhou,et al.  FINDSITEcomb: A Threading/Structure-Based, Proteomic-Scale Virtual Ligand Screening Approach , 2013, J. Chem. Inf. Model..

[23]  Phang-lang Chen,et al.  A novel small molecule RAD51 inactivator overcomes imatinib-resistance in chronic myeloid leukaemia , 2013, EMBO molecular medicine.

[24]  Jian Zhang,et al.  How to Improve Docking Accuracy of AutoDock4.2: A Case Study Using Different Electrostatic Potentials , 2013, J. Chem. Inf. Model..

[25]  Chaok Seok,et al.  GalaxyDock: Protein-Ligand Docking with Flexible Protein Side-chains , 2012, J. Chem. Inf. Model..

[26]  Anthony Nicholls,et al.  Essential considerations for using protein-ligand structures in drug discovery. , 2012, Drug discovery today.

[27]  Calvin Yu-Chian Chen,et al.  Uroporphyrinogen Decarboxylase as a Potential Target for Specific Components of Traditional Chinese Medicine: A Virtual Screening and Molecular Dynamics Study , 2012, PloS one.

[28]  M. Bhaskar,et al.  Molecular modeling, docking and ADMET studies towards development of novel Disopyramide analogs for potential inhibition of human voltage gated sodium channel proteins , 2012, Bioinformation.

[29]  Calvin Yu-Chian Chen,et al.  In Silico Identification of Potent Pancreatic Triacylglycerol Lipase Inhibitors from Traditional Chinese Medicine , 2012, PloS one.

[30]  Didier Rognan,et al.  Comparison and Druggability Prediction of Protein-Ligand Binding Sites from Pharmacophore-Annotated Cavity Shapes , 2012, J. Chem. Inf. Model..

[31]  Jean-François Gibrat,et al.  Automatic modeling of mammalian olfactory receptors and docking of odorants. , 2012, Protein engineering, design & selection : PEDS.

[32]  Stefano Piana,et al.  Refinement of protein structure homology models via long, all‐atom molecular dynamics simulations , 2012, Proteins.

[33]  B. Tidor,et al.  Design, synthesis, and biological and structural evaluations of novel HIV-1 protease inhibitors to combat drug resistance. , 2012, Journal of medicinal chemistry.

[34]  Adrià Cereto-Massagué,et al.  DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets , 2012, Bioinform..

[35]  Jung-Hsin Lin,et al.  idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach , 2012, Nucleic Acids Res..

[36]  Jeffrey Skolnick,et al.  FINDSITE(X): a structure-based, small molecule virtual screening approach with application to all identified human GPCRs. , 2012, Molecular pharmaceutics.

[37]  Ajay N. Jain,et al.  Surflex-Dock: Docking benchmarks and real-world application , 2012, Journal of Computer-Aided Molecular Design.

[38]  David Ryan Koes,et al.  ZINCPharmer: pharmacophore search of the ZINC database , 2012, Nucleic Acids Res..

[39]  Matthew P. Jacobson,et al.  Investigation of the Proteolytic Functions of an Expanded Cercarial Elastase Gene Family in Schistosoma mansoni , 2012, PLoS neglected tropical diseases.

[40]  Jacob D. Durrant,et al.  AutoClickChem: Click Chemistry in Silico , 2012, PLoS Comput. Biol..

[41]  Chieh-Hsi Wu,et al.  Computational analysis of novel drugs designed for use as acetylcholinesterase inhibitors and histamine H3 receptor antagonists for Alzheimer's disease by docking, scoring and de novo evolution , 2012, Molecular medicine reports.

[42]  Yang Zhang,et al.  BSP‐SLIM: A blind low‐resolution ligand‐protein docking approach using predicted protein structures , 2012, Proteins.

[43]  Po-Yuan Chen,et al.  Computational pharmaceutical analysis of anti-Alzheimer's Chinese medicine Coptidis Rhizoma alkaloids. , 2011, Molecular medicine reports.

[44]  Brian K. Shoichet,et al.  Statistical Potential for Modeling and Ranking of Protein-Ligand Interactions , 2011, J. Chem. Inf. Model..

[45]  Yang Zhang,et al.  Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. , 2011, Structure.

[46]  Calvin Yu-Chian Chen,et al.  Two Birds with One Stone? Possible Dual-Targeting H1N1 Inhibitors from Traditional Chinese Medicine , 2011, PLoS Comput. Biol..

[47]  Jacob D. Durrant,et al.  NNScore 2.0: A Neural-Network Receptor–Ligand Scoring Function , 2011, J. Chem. Inf. Model..

[48]  A. Yang,et al.  A practical synthesis of zanamivir phosphonate congeners with potent anti-influenza activity. , 2011, Journal of the American Chemical Society.

[49]  Calvin Yu-Chian Chen,et al.  Identification of Potent EGFR Inhibitors from TCM Database@Taiwan , 2011, PLoS Comput. Biol..

[50]  J. L. Ding,et al.  Delineation of Lipopolysaccharide (LPS)-binding Sites on Hemoglobin , 2011, The Journal of Biological Chemistry.

[51]  Kai-Wei Chang,et al.  In silico pharmacology suggests ginger extracts may reduce stroke risks. , 2011, Molecular bioSystems.

[52]  Xiaofeng Liu,et al.  SHAFTS: A Hybrid Approach for 3D Molecular Similarity Calculation. 1. Method and Assessment of Virtual Screening , 2011, J. Chem. Inf. Model..

[53]  Álvaro Cortés Cabrera,et al.  VSDMIP 1.5: an automated structure- and ligand-based virtual screening platform with a PyMOL graphical user interface , 2011, J. Comput. Aided Mol. Des..

[54]  Changhee Lee,et al.  BetaDock: Shape-Priority Docking Method Based on Beta-Complex , 2011, Journal of biomolecular structure & dynamics.

[55]  Kai-Wei Chang,et al.  iSMART: An Integrated Cloud Computing Web Server for Traditional Chinese Medicine for Online Virtual Screening, de novo Evolution and Drug Design , 2011, Journal of biomolecular structure & dynamics.

[56]  David Ryan Koes,et al.  Pharmer: Efficient and Exact Pharmacophore Search , 2011, J. Chem. Inf. Model..

[57]  Kai-Wei Chang,et al.  iScreen: world’s first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan , 2011, J. Comput. Aided Mol. Des..

[58]  Aurélien Grosdidier,et al.  SwissDock, a protein-small molecule docking web service based on EADock DSS , 2011, Nucleic Acids Res..

[59]  Ora Schueler-Furman,et al.  Rosetta FlexPepDock web server—high resolution modeling of peptide–protein interactions , 2011, Nucleic Acids Res..

[60]  Matteo Floris,et al.  Swimming into peptidomimetic chemical space using pepMMsMIMIC , 2011, Nucleic Acids Res..

[61]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[62]  Matthew P Jacobson,et al.  Turning a protein kinase on or off from a single allosteric site via disulfide trapping , 2011, Proceedings of the National Academy of Sciences.

[63]  Mark McGann,et al.  FRED Pose Prediction and Virtual Screening Accuracy , 2011, J. Chem. Inf. Model..

[64]  Calvin Yu-Chian Chen,et al.  TCM Database@Taiwan: The World's Largest Traditional Chinese Medicine Database for Drug Screening In Silico , 2011, PloS one.

[65]  Reed B. Jacob,et al.  Dockomatic - automated ligand creation and docking , 2010, BMC Research Notes.

[66]  Rui M. V. Abreu,et al.  MOLA: a bootable, self-configuring system for virtual screening using AutoDock4/Vina on computer clusters , 2010, J. Cheminformatics.

[67]  Stéphanie Pérot,et al.  Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. , 2010, Drug discovery today.

[68]  Alessandro Pedretti,et al.  Homology modeling and metabolism prediction of human carboxylesterase-2 using docking analyses by GriDock: a parallelized tool based on AutoDock 4.0 , 2010, J. Comput. Aided Mol. Des..

[69]  Kai-Cheng Hsu,et al.  SiMMap: a web server for inferring site-moiety map to recognize interaction preferences between protein pockets and compound moieties , 2010, Nucleic Acids Res..

[70]  A. Yang,et al.  Analogs of zanamivir with modified C4-substituents as the inhibitors against the group-1 neuraminidases of influenza viruses. , 2010, Bioorganic & medicinal chemistry.

[71]  Dominique Douguet,et al.  e-LEA3D: a computational-aided drug design web server , 2010, Nucleic Acids Res..

[72]  Kai Huang,et al.  PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach , 2010, Nucleic Acids Res..

[73]  Bert L. de Groot,et al.  Ligand docking and binding site analysis with PyMOL and Autodock/Vina , 2010, J. Comput. Aided Mol. Des..

[74]  Michael K. Gilson,et al.  Evaluating the Substrate-Envelope Hypothesis: Structural Analysis of Novel HIV-1 Protease Inhibitors Designed To Be Robust against Drug Resistance , 2010, Journal of Virology.

[75]  A. Yang,et al.  Development of GlcNAc-inspired iminocyclitiols as potent and selective N-acetyl-beta-hexosaminidase inhibitors. , 2010, ACS chemical biology.

[76]  Mark S. Johnson,et al.  Accurate conformation‐dependent molecular electrostatic potentials for high‐throughput in silico drug discovery , 2009, J. Comput. Chem..

[77]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[78]  Calvin Yu-Chian Chen,et al.  Weighted Equation and Rules—A Novel Concept for Evaluating Protein-Ligand Interaction , 2009, Journal of biomolecular structure & dynamics.

[79]  Liwei Li,et al.  BioDrugScreen: a computational drug design resource for ranking molecules docked to the human proteome , 2009, Nucleic Acids Res..

[80]  Zsolt Bikádi,et al.  Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock , 2009, J. Cheminformatics.

[81]  Michael M. Mysinger,et al.  Automated Docking Screens: A Feasibility Study , 2009, Journal of medicinal chemistry.

[82]  C. Tseng,et al.  Bioactivity-guided screening identifies pheophytin a as a potent anti-hepatitis C virus compound from Lonicera hypoglauca Miq. , 2009, Biochemical and biophysical research communications.

[83]  A. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[84]  I. Kuntz,et al.  DOCK 6: combining techniques to model RNA-small molecule complexes. , 2009, RNA.

[85]  Michal Brylinski,et al.  FINDSITELHM: A Threading-Based Approach to Ligand Homology Modeling , 2009, PLoS Comput. Biol..

[86]  Pierre Tufféry,et al.  wwLigCSRre: a 3D ligand-based server for hit identification and optimization , 2009, Nucleic Acids Res..

[87]  Roman G. Efremov,et al.  PLATINUM: a web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes , 2009, Bioinform..

[88]  B. Shoichet,et al.  Molecular docking and ligand specificity in fragment-based inhibitor discovery. , 2009, Nature chemical biology.

[89]  Eli S. Groban,et al.  The molecular basis of species-specific ligand activation of trace amine-associated receptor 1 (TAAR(1)). , 2009, ACS chemical biology.

[90]  Bruce Tidor,et al.  Additivity in the analysis and design of HIV protease inhibitors. , 2009, Journal of medicinal chemistry.

[91]  Mark S. Johnson,et al.  ShaEP: Molecular Overlay Based on Shape and Electrostatic Potential , 2009, J. Chem. Inf. Model..

[92]  Lauren K. Wolf,et al.  digital briefs: NEW SOFTWARE AND WEBSITES FOR THE CHEMICAL ENTERPRISE , 2009 .

[93]  Thomas Stützle,et al.  Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS , 2009, J. Chem. Inf. Model..

[94]  Bruce Tidor,et al.  Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors , 2008, Proceedings of the National Academy of Sciences.

[95]  Santiago Vilar,et al.  Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. , 2008, Current topics in medicinal chemistry.

[96]  Fedor N. Novikov,et al.  Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. , 2008, Journal of chemical information and modeling.

[97]  Arno Formella,et al.  Superimposé: a 3D structural superposition server , 2008, Nucleic Acids Res..

[98]  Amiram Goldblum,et al.  High quality binding modes in docking ligands to proteins , 2008, Proteins.

[99]  Hong Cao,et al.  HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants. , 2008, Journal of the American Chemical Society.

[100]  A. Yang,et al.  Factor Xa Active Site Substrate Specificity with Substrate Phage Display and Computational Molecular Modeling* , 2008, Journal of Biological Chemistry.

[101]  Matthew P Jacobson,et al.  Toward deciphering the code to aminergic G protein-coupled receptor drug design. , 2008, Chemistry & biology.

[102]  David Lagorce,et al.  MS-DOCK: Accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening , 2008, BMC Bioinformatics.

[103]  B. Tidor,et al.  Novel Method for Probing the Specificity Binding Profile of Ligands: Applications to HIV Protease , 2008, Chemical biology & drug design.

[104]  Jaques Reifman,et al.  DOVIS: an implementation for high-throughput virtual screening using AutoDock , 2008, BMC Bioinformatics.

[105]  Junichi Goto,et al.  ASEDock-Docking Based on Alpha Spheres and Excluded Volumes , 2008, J. Chem. Inf. Model..

[106]  B. Tidor,et al.  Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV‐1 protease , 2008, Proteins.

[107]  A. Yang,et al.  Design, synthesis, and evaluation of trifluoromethyl ketones as inhibitors of SARS-CoV 3CL protease , 2008, Bioorganic & Medicinal Chemistry.

[108]  Zsolt Zsoldos,et al.  LASSO—ligand activity by surface similarity order: a new tool for ligand based virtual screening , 2008, J. Comput. Aided Mol. Des..

[109]  Markus Wagener,et al.  A flexible approach to induced fit docking. , 2007, Journal of medicinal chemistry.

[110]  Zengjian Hu,et al.  Windock: Structure‐based drug discovery on windows‐based PCs , 2007, J. Comput. Chem..

[111]  Jeremy R. Greenwood,et al.  Epik: a software program for pKa prediction and protonation state generation for drug-like molecules , 2007, J. Comput. Aided Mol. Des..

[112]  B. Tidor,et al.  Computational design of antibody-affinity improvement beyond in vivo maturation , 2007, Nature Biotechnology.

[113]  An-Suei Yang,et al.  Synthesis of tamiflu and its phosphonate congeners possessing potent anti-influenza activity. , 2007, Journal of the American Chemical Society.

[114]  A. Yang,et al.  Structure‐Based Design and Synthesis of Highly Potent SARS‐CoV 3CL Protease Inhibitors , 2007, Chembiochem : a European journal of chemical biology.

[115]  Michel F Sanner,et al.  FLIPDock: Docking flexible ligands into flexible receptors , 2007, Proteins.

[116]  Heidi J. Imker,et al.  Prediction and assignment of function for a divergent N-succinyl amino acid racemase. , 2007, Nature chemical biology.

[117]  Aniko Simon,et al.  eHiTS: a new fast, exhaustive flexible ligand docking system. , 2007, Journal of molecular graphics & modelling.

[118]  Pankaj Sharma,et al.  ParDOCK: an all atom energy based Monte Carlo docking protocol for protein-ligand complexes. , 2007, Protein and peptide letters.

[119]  Robert P. Sheridan,et al.  Comparison of Topological, Shape, and Docking Methods in Virtual Screening , 2007, J. Chem. Inf. Model..

[120]  Joannis Apostolakis,et al.  GlamDock: Development and Validation of a New Docking Tool on Several Thousand Protein-Ligand Complexes , 2007, J. Chem. Inf. Model..

[121]  I. Tuñón,et al.  Calculation of binding energy using BLYP/MM for the HIV-1 integrase complexed with the S-1360 and two analogues. , 2007, Bioorganic & medicinal chemistry.

[122]  Aurélien Grosdidier,et al.  EADock: Docking of small molecules into protein active sites with a multiobjective evolutionary optimization , 2007, Proteins.

[123]  Philip M. Dean,et al.  QUASI: A Novel Method for Simultaneous Superposition of Multiple Flexible Ligands and Virtual Screening Using Partial Similarity , 2007, J. Chem. Inf. Model..

[124]  Hong Cao,et al.  Design of Mutation‐resistant HIV Protease Inhibitors with the Substrate Envelope Hypothesis , 2007, Chemical biology & drug design.

[125]  Matthew R. Lee,et al.  Improving Docking Accuracy through Molecular Mechanics Generalized Born Optimization and Scoring. , 2007, Journal of chemical theory and computation.

[126]  Christopher R. Corbeil,et al.  Docking Ligands into Flexible and Solvated Macromolecules, 1. Development and Validation of FITTED 1.0 , 2007, J. Chem. Inf. Model..

[127]  Thierry Langer,et al.  Efficient overlay of small organic molecules using 3D pharmacophores , 2007, J. Comput. Aided Mol. Des..

[128]  Joannis Apostolakis,et al.  Graph-Based Molecular Alignment (GMA) , 2007, J. Chem. Inf. Model..

[129]  A. Caflisch,et al.  Automatic and efficient decomposition of two-dimensional structures of small molecules for fragment-based high-throughput docking. , 2006, Journal of medicinal chemistry.

[130]  Julian Tirado-Rives,et al.  Contribution of conformer focusing to the uncertainty in predicting free energies for protein-ligand binding. , 2006, Journal of medicinal chemistry.

[131]  Bruce Tidor,et al.  Rational design of new binding specificity by simultaneous mutagenesis of calmodulin and a target peptide. , 2006, Biochemistry.

[132]  Po-Huang Liang,et al.  Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease. , 2006, Journal of medicinal chemistry.

[133]  G. Pujadas,et al.  BDT: an easy-to-use front-end application for automation of massive docking tasks and complex docking strategies with AutoDock , 2006, Bioinform..

[134]  Laetitia Martin-Chanas,et al.  kinDOCK: a tool for comparative docking of protein kinase ligands , 2006, Nucleic Acids Res..

[135]  Xavier Morelli,et al.  GFscore: A General Nonlinear Consensus Scoring Function for High-Throughput Docking , 2006, J. Chem. Inf. Model..

[136]  Thy-Hou Lin,et al.  Discovery of a novel family of SARS-CoV protease inhibitors by virtual screening and 3D-QSAR studies. , 2006, Journal of medicinal chemistry.

[137]  Miklos Feher,et al.  Consensus scoring for protein-ligand interactions. , 2006, Drug discovery today.

[138]  René Thomsen,et al.  MolDock: a new technique for high-accuracy molecular docking. , 2006, Journal of medicinal chemistry.

[139]  Bruce Tidor,et al.  Optimal charges in lead progression: a structure-based neuraminidase case study. , 2006, Journal of medicinal chemistry.

[140]  Bruce Tidor,et al.  Design of improved protein inhibitors of HIV‐1 cell entry: Optimization of electrostatic interactions at the binding interface , 2005, Proteins.

[141]  Andrea Musacchio,et al.  Defining Cdk5 ligand chemical space with small molecule inhibitors of tau phosphorylation. , 2005, Chemistry & biology.

[142]  Ruth Nussinov,et al.  PatchDock and SymmDock: servers for rigid and symmetric docking , 2005, Nucleic Acids Res..

[143]  C. Venkatachalam,et al.  LigScore: a novel scoring function for predicting binding affinities. , 2005, Journal of molecular graphics & modelling.

[144]  Jinn-Moon Yang,et al.  GEMDOCK: A generic evolutionary method for molecular docking , 2004, Proteins.

[145]  Matthew P. Repasky,et al.  Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. , 2004, Journal of medicinal chemistry.

[146]  Richard D. Taylor,et al.  Improved protein–ligand docking using GOLD , 2003, Proteins.

[147]  Robert D. Clark,et al.  Efficient Generation, Storage, and Manipulation of Fully Flexible Pharmacophore Multiplets and Their Use in 3-D Similarity Searching , 2003, J. Chem. Inf. Comput. Sci..

[148]  C. Dominguez,et al.  HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. , 2003, Journal of the American Chemical Society.

[149]  Gert Vriend,et al.  Increasing the precision of comparative models with YASARA NOVA—a self‐parameterizing force field , 2002, Proteins.

[150]  Anna Marabotti,et al.  Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 1. Models without explicit constrained water. , 2002, Journal of medicinal chemistry.

[151]  W Patrick Walters,et al.  Prediction of 'drug-likeness'. , 2002, Advanced drug delivery reviews.

[152]  Peter J. Fleming,et al.  Combinatorial Library Design Using a Multiobjective Genetic Algorithm , 2002, J. Chem. Inf. Comput. Sci..

[153]  Yuan-Ping Pang,et al.  EUDOC: a computer program for identification of drug interaction sites in macromolecules and drug leads from chemical databases , 2001, J. Comput. Chem..

[154]  A. Caflisch,et al.  Fragment-Based Flexible Ligand Docking by Evolutionary Optimization , 2001, Biological chemistry.

[155]  A. Caflisch,et al.  Efficient electrostatic solvation model for protein‐fragment docking , 2001, Proteins.

[156]  Thomas Lengauer,et al.  Evaluation of the FLEXX incremental construction algorithm for protein–ligand docking , 1999, Proteins.

[157]  Jaime Prilusky,et al.  Automated analysis of interatomic contacts in proteins , 1999, Bioinform..

[158]  Y. Martin,et al.  A general and fast scoring function for protein-ligand interactions: a simplified potential approach. , 1999, Journal of medicinal chemistry.

[159]  Hans-Joachim Böhm,et al.  Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs , 1998, J. Comput. Aided Mol. Des..

[160]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[161]  Ajay N. Jain Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities , 1996, J. Comput. Aided Mol. Des..

[162]  A. N. Jain,et al.  Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. , 1996, Chemistry & biology.

[163]  Gareth Jones,et al.  A genetic algorithm for flexible molecular overlay and pharmacophore elucidation , 1995, J. Comput. Aided Mol. Des..

[164]  Gennady M Verkhivker,et al.  Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. , 1995, Chemistry & biology.

[165]  M. Mizutani,et al.  Rational automatic search method for stable docking models of protein and ligand. , 1994, Journal of molecular biology.

[166]  Ruben Abagyan,et al.  ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation , 1994, J. Comput. Chem..

[167]  Robert P. Sheridan,et al.  FLOG: A system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[168]  Randy J. Read,et al.  A multiple‐start Monte Carlo docking method , 1992 .

[169]  S. Chatterjee,et al.  Influential Observations, High Leverage Points, and Outliers in Linear Regression , 1986 .

[170]  G. N. Ramachandran,et al.  Stereochemistry of polypeptide chain configurations. , 1963, Journal of molecular biology.

[171]  Kenneth M. Merz,et al.  Drug Design : Structure-and Ligand-Based Approaches , 2017 .

[172]  Jens Meiler,et al.  Rosetta Ligand docking with flexible XML protocols. , 2012, Methods in molecular biology.

[173]  Matthew L. Danielson,et al.  Computer-aided drug design platform using PyMOL , 2011, J. Comput. Aided Mol. Des..

[174]  Reed B. Jacob,et al.  DockoMatic - Automated Peptide Analog Creation for High Throughput Virtual Screening , 2011 .

[175]  W. Sippl,et al.  ARA D OCK S – A framework for molecular docking with population-based metaheuristics , 2010 .

[176]  R. Nussinov,et al.  A Novel Approach for Efficient Pharmacophore-based Virtual Screening: Method and Applications , 2009 .

[177]  Joannis Apostolakis,et al.  Similarity Based Docking , 2008, J. Chem. Inf. Model..

[178]  C. Venkatachalam,et al.  LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. , 2003, Journal of molecular graphics & modelling.

[179]  S Vajda,et al.  Flexible docking and design. , 1995, Annual review of biophysics and biomolecular structure.

[180]  R. Glen,et al.  Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. , 1995, Journal of molecular biology.

[181]  D. Goodsell,et al.  Automated docking of substrates to proteins by simulated annealing , 1990, Proteins.

[182]  Kuan-Chung Chen,et al.  Research Article in Silico Identification of Potent Ppar-í Μí»¾ Agonists from Traditional Chinese Medicine: a Bioactivity Prediction, Virtual Screening, and Molecular Dynamics Study , 2022 .

[183]  Data and text,et al.  BIOINFORMATICS APPLICATIONS , 2022 .