Neuronal wiring diagram of an adult brain

Connections between neurons can be mapped by acquiring and analyzing electron microscopic (EM) brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, yet inadequate for understanding brain function more globally. Here, we present the first neuronal wiring diagram of a whole adult brain, containing 5×107 chemical synapses between ∼130,000 neurons reconstructed from a female Drosophila melanogaster. The resource also incorporates annotations of cell classes and types, nerves, hemilineages, and predictions of neurotransmitter identities. Data products are available by download, programmatic access, and interactive browsing and made interoperable with other fly data resources. We show how to derive a projectome, a map of projections between regions, from the connectome. We demonstrate the tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine, and descending neurons), across both hemispheres, and between the central brain and the optic lobes. Tracing from a subset of photoreceptors all the way to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviors. The technologies and open ecosystem of the FlyWire Consortium set the stage for future large-scale connectome projects in other species.

[1]  Sridhar R. Jagannathan,et al.  A consensus cell type atlas from multiple connectomes reveals principles of circuit stereotypy and variation. , 2023, bioRxiv : the preprint server for biology.

[2]  E. Marin,et al.  Transforming descending input into behavior: The organization of premotor circuits in the Drosophila Male Adult Nerve Cord connectome , 2023, bioRxiv.

[3]  Louis K. Scheffer,et al.  A Connectome of the Male Drosophila Ventral Nerve Cord , 2023, bioRxiv.

[4]  E. Marin,et al.  Systematic annotation of a complete adult male Drosophila nerve cord connectome reveals principles of functional organisation , 2023, bioRxiv.

[5]  M. Pankratz,et al.  Serotonergic reinforcement of a complete swallowing circuit , 2023, bioRxiv.

[6]  Salil S. Bidaye,et al.  A leaky integrate-and-fire computational model based on the connectome of the entire adult Drosophila brain reveals insights into sensorimotor processing , 2023, bioRxiv.

[7]  A. Nern,et al.  Identifying determinants of synaptic specificity by integrating connectomes and transcriptomes , 2023, bioRxiv.

[8]  Srinivas C. Turaga,et al.  Connectome-constrained deep mechanistic networks predict neural responses across the fly visual system at single-neuron resolution , 2023, bioRxiv.

[9]  T. Préat,et al.  Asymmetric activity of NetrinB controls laterality of the Drosophila brain , 2023, Nature Communications.

[10]  Eric D. Hoopfer,et al.  Somatotopic organization among parallel sensory pathways that promote a grooming sequence in Drosophila , 2023, bioRxiv.

[11]  Haein Kim,et al.  GABA-mediated inhibition in visual feedback neurons fine-tunes Drosophila male courtship , 2023, bioRxiv.

[12]  Patrick Breads,et al.  Synaptic gradients transform object location to action , 2023, Nature.

[13]  Anthony W. Azevedo,et al.  Tools for comprehensive reconstruction and analysis of Drosophila motor circuits , 2022, bioRxiv.

[14]  Michael B. Reiser,et al.  Eye structure shapes neuron function in Drosophila motion vision , 2022, bioRxiv.

[15]  Christopher T. Zugates,et al.  A searchable image resource of Drosophila GAL4 driver expression patterns with single neuron resolution , 2022, bioRxiv.

[16]  Heather G. Patsolic,et al.  The connectome of an insect brain , 2022, bioRxiv.

[17]  Karen Y. Cheng,et al.  Combined patterns of activity of major neuronal classes underpin a global change in brain state during spontaneous and forced walk in Drosophila , 2022, bioRxiv.

[18]  David Grant Colburn Hildebrand,et al.  Structured cerebellar connectivity supports resilient pattern separation , 2022, Nature.

[19]  H. S. Meyer,et al.  Connectomic comparison of mouse and human cortex , 2022, Science.

[20]  G. Jefferis,et al.  Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons , 2022, eLife.

[21]  B. Dickson,et al.  Taste quality and hunger interactions in a feeding sensorimotor circuit , 2022, bioRxiv.

[22]  Eric T. Trautman,et al.  Petascale pipeline for precise alignment of images from serial section electron microscopy , 2022, bioRxiv.

[23]  S. Druckmann,et al.  Mapping the neural dynamics of locomotion across the Drosophila brain , 2022, Current Biology.

[24]  Michael B. Reiser,et al.  A functionally ordered visual feature map in the Drosophila brain , 2022, Neuron.

[25]  Yvette E. Fisher Flexible navigational computations in the Drosophila central complex , 2022, Current Opinion in Neurobiology.

[26]  Wolf Huetteroth,et al.  Olfactory stimuli and moonwalker SEZ neurons can drive backward locomotion in Drosophila , 2022, Current Biology.

[27]  Chris S. Jordan,et al.  Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity , 2022, Cell.

[28]  L. Luo,et al.  Mating-driven variability in olfactory local interneuron wiring , 2022, Science advances.

[29]  A. Fiala,et al.  The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx , 2021, eLife.

[30]  Michael B. Reiser,et al.  Neuronal circuits integrating visual motion information in Drosophila melanogaster , 2021, Current Biology.

[31]  Kyle L. Luther,et al.  3D reconstruction of cell nuclei in a full Drosophila brain , 2021 .

[32]  Matthew R Whiteway,et al.  Flygenvectors: The spatial and temporal structure of neural activity across the fly brain , 2021, bioRxiv.

[33]  B. Dickson,et al.  Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain , 2021, eLife.

[34]  Saumil S. Patel,et al.  Petascale neural circuit reconstruction: automated methods , 2021, bioRxiv.

[35]  Saumil S. Patel,et al.  Functional connectomics spanning multiple areas of mouse visual cortex , 2021, bioRxiv.

[36]  Srinivas C. Turaga,et al.  Automatic detection of synaptic partners in a whole-brain Drosophila electron microscopy data set , 2021, Nature Methods.

[37]  Peter H. Li,et al.  A connectomic study of a petascale fragment of human cerebral cortex , 2021, bioRxiv.

[38]  Michael B. Reiser,et al.  Synaptic targets of photoreceptors specialized to detect color and skylight polarization in Drosophila , 2021, bioRxiv.

[39]  Steven J. Cook,et al.  A multi-scale brain map derived from whole-brain volumetric reconstructions , 2021, Nature.

[40]  M. Dickinson,et al.  Transforming representations of movement from body- to world-centric space , 2020, Nature.

[41]  Stephen M. Plaza,et al.  Information flow, cell types and stereotypy in a full olfactory connectome , 2020, bioRxiv.

[42]  Aljoscha Nern,et al.  The connectome of the adult Drosophila mushroom body provides insights into function , 2020, eLife.

[43]  Gerald M. Rubin,et al.  A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection , 2020, bioRxiv.

[44]  C. Desplan,et al.  Neuronal diversity and convergence in a visual system developmental atlas , 2020, Nature.

[45]  G. Rubin,et al.  Cell types and neuronal circuitry underlying female aggression in Drosophila , 2020, eLife.

[46]  Satrajit S. Ghosh,et al.  A multimodal cell census and atlas of the mammalian primary motor cortex , 2020, Nature.

[47]  S. Zipursky,et al.  Transcriptional Programs of Circuit Assembly in the Drosophila Visual System , 2020, Neuron.

[48]  Aljoscha Nern,et al.  Neural network organization for courtship-song feature detection in Drosophila , 2020, Current Biology.

[49]  Rana N. El-Danaf,et al.  Neuronal diversity and convergence in a visual system developmental atlas , 2020, Nature.

[50]  Ran Lu,et al.  FlyWire: Online community for whole-brain connectomics , 2020, Nature Methods.

[51]  B. Dickson,et al.  Neural circuit mechanisms of sexual receptivity in Drosophila females , 2020, Nature.

[52]  G. Jefferis,et al.  Neurotransmitter Classification from Electron Microscopy Images at Synaptic Sites in Drosophila Melanogaster , 2020, bioRxiv.

[53]  Albert-László Barabási,et al.  Uncovering the genetic blueprint of the C. elegans nervous system , 2020, Proceedings of the National Academy of Sciences.

[54]  Daniel R. Berger,et al.  Connectomes across development reveal principles of brain maturation in C. elegans , 2020, bioRxiv.

[55]  Peter H. Li,et al.  Structured sampling of olfactory input by the fly mushroom body , 2020, Current Biology.

[56]  James D Manton,et al.  The natverse, a versatile toolbox for combining and analysing neuroanatomical data , 2020, eLife.

[57]  Feng Li,et al.  A connectome and analysis of the adult Drosophila central brain , 2020, bioRxiv.

[58]  Andrew C. Lin,et al.  Localized inhibition in the Drosophila mushroom body , 2020, bioRxiv.

[59]  Jun-Li Yang,et al.  Wolfberry extracts inhibit Aβ1-42 aggregation and rescue memory loss of AD drosophila , 2020 .

[60]  Talmo D. Pereira,et al.  The neural basis for a persistent internal state in Drosophila females , 2020, bioRxiv.

[61]  D. Bock,et al.  Wiring patterns from auditory sensory neurons to the escape and song‐relay pathways in fruit flies , 2020, The Journal of comparative neurology.

[62]  H. R. Morgan,et al.  Octopamine neuron dependent aggression requires dVGLUT from dual-transmitting neurons , 2020, PLoS genetics.

[63]  P. Schlegel,et al.  Complete Connectomic Reconstruction of Olfactory Projection Neurons in the Fly Brain , 2020, Current Biology.

[64]  Wei-Chung Allen Lee,et al.  Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy , 2020, Cell.

[65]  Casey M. Schneider-Mizell,et al.  Binary and analog variation of synapses between cortical pyramidal neurons , 2019, bioRxiv.

[66]  G. Knott,et al.  Gas cluster ion beam SEM for imaging of large tissue samples with 10 nm isotropic resolution , 2019, Nature Methods.

[67]  Yun Wang,et al.  Hierarchical organization of cortical and thalamic connectivity , 2019, Nature.

[68]  Thomas K. Berger,et al.  ON selectivity in the Drosophila visual system is a multisynaptic process involving both glutamatergic and GABAergic inhibition , 2019, eLife.

[69]  Diego A. Pacheco,et al.  Auditory activity is diverse and widespread throughout the central brain of Drosophila , 2019, Nature Neuroscience.

[70]  Yi Wang,et al.  Whole-animal connectomes of both Caenorhabditis elegans sexes , 2019, Nature.

[71]  G. Jefferis,et al.  Neuronal cell types in the fly: single-cell anatomy meets single-cell genomics , 2019, Current Opinion in Neurobiology.

[72]  A. Borst,et al.  Extreme Compartmentalization in a Drosophila Amacrine Cell , 2019, Current Biology.

[73]  H. Sebastian Seung,et al.  Convolutional nets for reconstructing neural circuits from brain images acquired by serial section electron microscopy , 2019, Current Opinion in Neurobiology.

[74]  Gary Huang,et al.  Comparisons between the ON- and OFF-edge motion pathways in the Drosophila brain , 2019, eLife.

[75]  C. Klämbt,et al.  Drosophila glia: Few cell types and many conserved functions , 2018, Glia.

[76]  Rana N. El-Danaf,et al.  Synaptic Convergence Patterns onto Retinal Ganglion Cells Are Preserved despite Topographic Variation in Pre- and Postsynaptic Territories , 2018, Cell reports.

[77]  Sean R. Eddy,et al.  A genetic, genomic, and computational resource for exploring neural circuit function , 2018, bioRxiv.

[78]  P. Verstreken,et al.  A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain , 2018, Cell.

[79]  I. Meinertzhagen Of what use is connectomics? A personal perspective on the Drosophila connectome , 2018, Journal of Experimental Biology.

[80]  Stephan Saalfeld,et al.  Synaptic Cleft Segmentation in Non-Isotropic Volume Electron Microscopy of the Complete Drosophila Brain , 2018, MICCAI.

[81]  Paola Cognigni,et al.  Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila , 2018, Current Opinion in Neurobiology.

[82]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[83]  Kevin L. Briggman,et al.  Structural and functional diversity of a dense sample of retinal ganglion cells , 2017 .

[84]  Scott Waddell,et al.  Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics , 2017, bioRxiv.

[85]  Larry Lindsey,et al.  High-precision automated reconstruction of neurons with flood-filling networks , 2017, Nature Methods.

[86]  Eric T. Trautman,et al.  A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster , 2017, Cell.

[87]  K. Hayworth,et al.  Enhanced FIB-SEM systems for large-volume 3D imaging , 2017, eLife.

[88]  Aljoscha Nern,et al.  The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila , 2017, eLife.

[89]  G. Urban,et al.  Automated synaptic connectivity inference for volume electron microscopy , 2017, Nature Methods.

[90]  G. Rubin,et al.  The glia of the adult Drosophila nervous system , 2017, Glia.

[91]  Cheng Lyu,et al.  Quantitative Predictions Orchestrate Visual Signaling in Drosophila , 2017, Cell.

[92]  Michael B. Reiser,et al.  Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs , 2016, eLife.

[93]  Marie P Suver,et al.  An Array of Descending Visual Interneurons Encoding Self-Motion in Drosophila , 2016, The Journal of Neuroscience.

[94]  Yoshinori Aso,et al.  Direct neural pathways convey distinct visual information to Drosophila mushroom bodies , 2016, eLife.

[95]  D. Arendt,et al.  From nerve net to nerve ring, nerve cord and brain — evolution of the nervous system , 2015, Nature Reviews Neuroscience.

[96]  Casey M. Schneider-Mizell,et al.  Quantitative neuroanatomy for connectomics in Drosophila , 2015, bioRxiv.

[97]  A. Borst,et al.  Common circuit design in fly and mammalian motion vision , 2015, Nature Neuroscience.

[98]  O. Sporns,et al.  Connectomics-Based Analysis of Information Flow in the Drosophila Brain , 2015, Current Biology.

[99]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[100]  Rachel I. Wilson,et al.  Supplemental Information Simultaneous Encoding of Odors by Channels with Diverse Sensitivity to Inhibition , 2015 .

[101]  Michael B. Reiser,et al.  Wide-Field Feedback Neurons Dynamically Tune Early Visual Processing , 2014, Neuron.

[102]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[103]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[104]  Yi Deng,et al.  Dynamic sensory cues shape song structure in Drosophila , 2014, Nature.

[105]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[106]  Andrew C. Lin,et al.  Sparse, Decorrelated Odor Coding in the Mushroom Body Enhances Learned Odor Discrimination , 2014, Nature Neuroscience.

[107]  Julie H. Simpson,et al.  A Systematic Nomenclature for the Insect Brain , 2014, Neuron.

[108]  F. Diao,et al.  A Hard-Wired Glutamatergic Circuit Pools and Relays UV Signals to Mediate Spectral Preference in Drosophila , 2014, Neuron.

[109]  Andrew R. McKinstry-Wu,et al.  Connectome: How the Brain’s Wiring Makes Us Who We Are , 2013 .

[110]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[111]  Rachel I. Wilson,et al.  Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system , 2013, Proceedings of the National Academy of Sciences.

[112]  L. Abbott,et al.  Random Convergence of Olfactory Inputs in the Drosophila Mushroom Body , 2013, Nature.

[113]  Xiaoya Ma,et al.  Complex brain and optic lobes in an early Cambrian arthropod , 2012, Nature.

[114]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[115]  Kevin L. Briggman,et al.  Structural neurobiology: missing link to a mechanistic understanding of neural computation , 2012, Nature Reviews Neuroscience.

[116]  W. Denk,et al.  The Big and the Small: Challenges of Imaging the Brain’s Circuits , 2011, Science.

[117]  G. Cao,et al.  Synchronized Bilateral Synaptic Inputs to Drosophila melanogaster Neuropeptidergic Rest/Arousal Neurons , 2011, The Journal of Neuroscience.

[118]  Guan-Yu Chen,et al.  Three-Dimensional Reconstruction of Brain-wide Wiring Networks in Drosophila at Single-Cell Resolution , 2011, Current Biology.

[119]  G. Rubin,et al.  Refinement of Tools for Targeted Gene Expression in Drosophila , 2010, Genetics.

[120]  Jai Y. Yu,et al.  Sexual Dimorphism in the Fly Brain , 2010, Current Biology.

[121]  Joseph F. Murray,et al.  Convolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentation , 2010, Neural Computation.

[122]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[123]  Ronald L. Davis,et al.  Frontiers in Neural Circuits Neural Circuits , 2022 .

[124]  Gilles Laurent,et al.  Testing Odor Response Stereotypy in the Drosophila Mushroom Body , 2008, Neuron.

[125]  J. Sanes,et al.  Ome sweet ome: what can the genome tell us about the connectome? , 2008, Current Opinion in Neurobiology.

[126]  G. Knott,et al.  Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling , 2008, The Journal of Neuroscience.

[127]  Joseph F. Murray,et al.  Supervised Learning of Image Restoration with Convolutional Networks , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[128]  Jeff W Lichtman,et al.  The rise of the 'projectome' , 2007, Nature Methods.

[129]  Alexander Borst,et al.  Integration of Lobula Plate Output Signals by DNOVS1, an Identified Premotor Descending Neuron , 2007, The Journal of Neuroscience.

[130]  Haojiang Luan,et al.  Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression , 2006, Neuron.

[131]  N. Vesselkin,et al.  The centrifugal visual system of vertebrates: A comparative analysis of its functional anatomical organization , 2006, Brain Research Reviews.

[132]  Kei Ito,et al.  Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula‐specific pathways , 2006, The Journal of comparative neurology.

[133]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[134]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[135]  Dmitri B Chklovskii,et al.  Synaptic Connectivity and Neuronal Morphology Two Sides of the Same Coin , 2004, Neuron.

[136]  F. Collins,et al.  The Human Genome Project: Lessons from Large-Scale Biology , 2003, Science.

[137]  G. Stange,et al.  Anisotropic imaging in the dragonfly median ocellus: a matched filter for horizon detection , 2002, Journal of Comparative Physiology A.

[138]  W. Quinn,et al.  The amnesiac Gene Product Is Expressed in Two Neurons in the Drosophila Brain that Are Critical for Memory , 2000, Cell.

[139]  Masayuki Nakajima,et al.  TEASAR: tree-structure extraction algorithm for accurate and robust skeletons , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[140]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[141]  Larry W. Swanson,et al.  Mapping the human brain: past, present, and future , 1995, Trends in Neurosciences.

[142]  DH Hall,et al.  The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[143]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[144]  G. Palm,et al.  Density of neurons and synapses in the cerebral cortex of the mouse , 1989, The Journal of comparative neurology.

[145]  A. Hofbauer,et al.  Does Drosophila have seven eyes? , 1989, Naturwissenschaften.

[146]  S. D. Carlson,et al.  Ultrastructure of the ocellar visual system in normal and mutant Drosophila melanogaster. , 1989, Journal of neurogenetics.

[147]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[148]  W. Stark,et al.  Electrophysiological characterization ofDrosophila ocelli , 1978, Journal of comparative physiology.

[149]  H. J. Jerison Brain to body ratios and the evolution of intelligence. , 1955, Science.

[150]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster , 2004, Cell and Tissue Research.

[151]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[152]  V. Braitenberg Vehicles, Experiments in Synthetic Psychology , 1984 .