Bayesian parameter estimation using Gaussian states and measurements
暂无分享,去创建一个
Nicolai Friis | Elizabeth Agudelo | Simon Morelli | Ayaka Usui | E. Agudelo | N. Friis | A. Usui | S. Morelli | Simon Morelli
[1] W. Marsden. I and J , 2012 .
[2] Jeanette G. Grasselli,et al. “On the Relative Motion of the Earth and the Luminiferous Ether” , 1987 .
[3] Jeffrey H. Shapiro,et al. Optical communication with two-photon coherent states-Part III: Quantum measurements realizable with photoemissive detectors , 1980, IEEE Trans. Inf. Theory.
[4] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[5] Jesús Rubio,et al. Quantum metrology in the presence of limited data , 2018, New Journal of Physics.
[6] Pavel Sekatski,et al. Flexible resources for quantum metrology , 2016, 1610.09999.
[7] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[8] Jeffrey H. Shapiro,et al. Optical communication with two-photon coherent states-Part II: Photoemissive detection and structured receiver performance , 1979, IEEE Trans. Inf. Theory.
[9] C. Robert,et al. Understanding Computational Bayesian Statistics , 2009 .
[10] Ivette Fuentes,et al. Quantum parameter estimation using multi-mode Gaussian states , 2015, 1502.07924.
[11] M. Muller,et al. Adaptive Bayesian phase estimation for quantum error correcting codes , 2019, New Journal of Physics.
[12] N. Treps,et al. Quantum parameter estimation using general single-mode Gaussian states , 2013, 1307.4637.
[13] Howard Raiffa,et al. Applied Statistical Decision Theory. , 1961 .
[14] J. Mayer,et al. On the Quantum Correction for Thermodynamic Equilibrium , 1947 .
[15] Gerardo Adesso,et al. Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..
[16] M. Paris. Quantum estimation for quantum technology , 2008, 0804.2981.
[17] 'Angel Rivas,et al. Sub-Heisenberg estimation of non-random phase shifts , 2011, 1105.6310.
[18] I. Fuentes,et al. Optimal probe states for the estimation of Gaussian unitary channels , 2016, 1603.05545.
[19] R. Gill,et al. Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .
[20] J. Kołodyński,et al. Quantum limits in optical interferometry , 2014, 1405.7703.
[21] A Acín,et al. Noisy metrology beyond the standard quantum limit. , 2012, Physical review letters.
[22] Steven Kay,et al. Fundamentals Of Statistical Signal Processing , 2001 .
[23] Andreas Ritter,et al. Detection Estimation And Linear Modulation Theory , 2016 .
[24] A. Holevo. Structure of a General Quantum Gaussian Observable , 2020, Proceedings of the Steklov Institute of Mathematics.
[25] Jes'us Rubio,et al. Non-asymptotic analysis of quantum metrology protocols beyond the Cramér–Rao bound , 2017, 1707.05022.
[26] G. D’Ariano,et al. Optimal estimation of squeezing , 2006, quant-ph/0601103.
[27] Jeffrey H. Shapiro,et al. Optical communication with two-photon coherent states-Part I: Quantum-state propagation and quantum-noise , 1978, IEEE Trans. Inf. Theory.
[28] L. Pezzè,et al. Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.
[29] Giulio Chiribella,et al. Covariant quantum measurements that maximize the likelihood , 2004, quant-ph/0403083.
[30] Michael J. W. Hall,et al. Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates , 2012, 1209.3547.
[31] Seth Lloyd,et al. Gaussian quantum information , 2011, 1110.3234.
[32] L. Davidovich,et al. Quantum metrological limits via a variational approach. , 2012, Physical review letters.
[33] Steward D. Personick,et al. Application of quantum estimation theory to analog communication over quantum channels , 1971, IEEE Trans. Inf. Theory.
[34] A. S. Holevo,et al. Covariant measurements and imprimitivity systems , 1984 .
[35] Milburn,et al. Hyperbolic phase and squeeze-parameter estimation. , 1994, Physical Review A. Atomic, Molecular, and Optical Physics.
[36] Marco G. Genoni,et al. Diagnosing Imperfections in Quantum Sensors via Generalized Cramér-Rao Bounds , 2020 .
[37] Esteban Martinez,et al. Quantum estimation of unknown parameters , 2016, 1606.07899.
[38] Stefano Olivares,et al. Optical phase estimation in the presence of phase diffusion. , 2010, Physical review letters.
[39] M. Daoud,et al. Multiparameter quantum estimation theory in quantum Gaussian states , 2020, 2009.00762.
[40] Giulio D'Agostini,et al. BAYESIAN REASONING IN DATA ANALYSIS: A CRITICAL INTRODUCTION , 2003 .
[41] Pavel Sekatski,et al. Quantum metrology with full and fast quantum control , 2016, 1603.08944.
[42] Zhang Jiang,et al. Quantum Fisher information for states in exponential form , 2013, 1310.2687.
[43] W. M. Liu,et al. Unbounded quantum Fisher information in two-path interferometry with finite photon number , 2011, 1105.2990.
[44] Dominik Šafránek. Estimation of Gaussian quantum states , 2017, Journal of Physics A: Mathematical and Theoretical.
[45] George Woodworth,et al. Bayesian Reasoning in Data Analysis: A Critical Introduction , 2004 .
[46] Pieter Kok,et al. Geometric perspective on quantum parameter estimation , 2019, AVS Quantum Science.
[47] Howard M. Wiseman,et al. π-Corrected Heisenberg Limit. , 2019, Physical review letters.
[48] M. Paris,et al. Squeezed vacuum as a universal quantum probe , 2008, 0802.1682.
[49] Rafał Demkowicz-Dobrzański,et al. The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.
[50] V. Giovannetti,et al. Versatile Gaussian probes for squeezing estimation , 2017, 1703.05554.
[51] M. Hayashi,et al. Quantum information with Gaussian states , 2007, 0801.4604.
[52] B. Roy Frieden,et al. Science from Fisher Information: A Unification , 2004 .
[53] Marcin Jarzyna,et al. True precision limits in quantum metrology , 2014, 1407.4805.
[54] S. Paesani,et al. Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip. , 2017, Physical review letters.
[55] Timothy C. Ralph,et al. Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).
[56] Nathan Wiebe,et al. Efficient Bayesian Phase Estimation. , 2015, Physical review letters.
[57] F. Illuminati,et al. Entanglement in continuous-variable systems: recent advances and current perspectives , 2007, quant-ph/0701221.
[58] G. Tóth,et al. Quantum metrology from a quantum information science perspective , 2014, 1405.4878.
[59] Daniel Braun,et al. Neural-Network Heuristics for Adaptive Bayesian Quantum Estimation , 2020, PRX Quantum.
[60] R. Simon,et al. The real symplectic groups in quantum mechanics and optics , 1995, quant-ph/9509002.
[61] Gerd Leuchs,et al. 30 years of squeezed light generation , 2015, 1511.03250.
[62] Fabio Sciarrino,et al. Experimental adaptive Bayesian estimation of multiple phases with limited data , 2020, npj Quantum Information.
[63] P. Sekatski,et al. Dynamical decoupling leads to improved scaling in noisy quantum metrology , 2015, 1512.07476.
[64] Jesús Rubio,et al. Bayesian multiparameter quantum metrology with limited data , 2019, Physical Review A.
[65] Alex Monras,et al. Phase space formalism for quantum estimation of Gaussian states , 2013, 1303.3682.