Bayesian parameter estimation using Gaussian states and measurements

Bayesian analysis is a framework for parameter estimation that applies even in uncertainty regimes where the commonly used local (frequentist) analysis based on the Cramer-Rao bound is not well defined. In particular, it applies when no initial information about the parameter value is available, e.g., when few measurements are performed. Here, we consider three paradigmatic estimation schemes in continuous-variable quantum metrology (estimation of displacements, phases, and squeezing strengths) and analyse them from the Bayesian perspective. For each of these scenarios, we investigate the precision achievable with single-mode Gaussian states under homodyne and heterodyne detection. This allows us to identify Bayesian estimation strategies that combine good performance with the potential for straightforward experimental realization in terms of Gaussian states and measurements. Our results provide practical solutions for reaching uncertainties where local estimation techniques apply, thus bridging the gap to regimes where asymptotically optimal strategies can be employed.

[1]  W. Marsden I and J , 2012 .

[2]  Jeanette G. Grasselli,et al.  “On the Relative Motion of the Earth and the Luminiferous Ether” , 1987 .

[3]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part III: Quantum measurements realizable with photoemissive detectors , 1980, IEEE Trans. Inf. Theory.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Jesús Rubio,et al.  Quantum metrology in the presence of limited data , 2018, New Journal of Physics.

[6]  Pavel Sekatski,et al.  Flexible resources for quantum metrology , 2016, 1610.09999.

[7]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[8]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part II: Photoemissive detection and structured receiver performance , 1979, IEEE Trans. Inf. Theory.

[9]  C. Robert,et al.  Understanding Computational Bayesian Statistics , 2009 .

[10]  Ivette Fuentes,et al.  Quantum parameter estimation using multi-mode Gaussian states , 2015, 1502.07924.

[11]  M. Muller,et al.  Adaptive Bayesian phase estimation for quantum error correcting codes , 2019, New Journal of Physics.

[12]  N. Treps,et al.  Quantum parameter estimation using general single-mode Gaussian states , 2013, 1307.4637.

[13]  Howard Raiffa,et al.  Applied Statistical Decision Theory. , 1961 .

[14]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[15]  Gerardo Adesso,et al.  Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..

[16]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[17]  'Angel Rivas,et al.  Sub-Heisenberg estimation of non-random phase shifts , 2011, 1105.6310.

[18]  I. Fuentes,et al.  Optimal probe states for the estimation of Gaussian unitary channels , 2016, 1603.05545.

[19]  R. Gill,et al.  Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .

[20]  J. Kołodyński,et al.  Quantum limits in optical interferometry , 2014, 1405.7703.

[21]  A Acín,et al.  Noisy metrology beyond the standard quantum limit. , 2012, Physical review letters.

[22]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[23]  Andreas Ritter,et al.  Detection Estimation And Linear Modulation Theory , 2016 .

[24]  A. Holevo Structure of a General Quantum Gaussian Observable , 2020, Proceedings of the Steklov Institute of Mathematics.

[25]  Jes'us Rubio,et al.  Non-asymptotic analysis of quantum metrology protocols beyond the Cramér–Rao bound , 2017, 1707.05022.

[26]  G. D’Ariano,et al.  Optimal estimation of squeezing , 2006, quant-ph/0601103.

[27]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part I: Quantum-state propagation and quantum-noise , 1978, IEEE Trans. Inf. Theory.

[28]  L. Pezzè,et al.  Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.

[29]  Giulio Chiribella,et al.  Covariant quantum measurements that maximize the likelihood , 2004, quant-ph/0403083.

[30]  Michael J. W. Hall,et al.  Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates , 2012, 1209.3547.

[31]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[32]  L. Davidovich,et al.  Quantum metrological limits via a variational approach. , 2012, Physical review letters.

[33]  Steward D. Personick,et al.  Application of quantum estimation theory to analog communication over quantum channels , 1971, IEEE Trans. Inf. Theory.

[34]  A. S. Holevo,et al.  Covariant measurements and imprimitivity systems , 1984 .

[35]  Milburn,et al.  Hyperbolic phase and squeeze-parameter estimation. , 1994, Physical Review A. Atomic, Molecular, and Optical Physics.

[36]  Marco G. Genoni,et al.  Diagnosing Imperfections in Quantum Sensors via Generalized Cramér-Rao Bounds , 2020 .

[37]  Esteban Martinez,et al.  Quantum estimation of unknown parameters , 2016, 1606.07899.

[38]  Stefano Olivares,et al.  Optical phase estimation in the presence of phase diffusion. , 2010, Physical review letters.

[39]  M. Daoud,et al.  Multiparameter quantum estimation theory in quantum Gaussian states , 2020, 2009.00762.

[40]  Giulio D'Agostini,et al.  BAYESIAN REASONING IN DATA ANALYSIS: A CRITICAL INTRODUCTION , 2003 .

[41]  Pavel Sekatski,et al.  Quantum metrology with full and fast quantum control , 2016, 1603.08944.

[42]  Zhang Jiang,et al.  Quantum Fisher information for states in exponential form , 2013, 1310.2687.

[43]  W. M. Liu,et al.  Unbounded quantum Fisher information in two-path interferometry with finite photon number , 2011, 1105.2990.

[44]  Dominik Šafránek Estimation of Gaussian quantum states , 2017, Journal of Physics A: Mathematical and Theoretical.

[45]  George Woodworth,et al.  Bayesian Reasoning in Data Analysis: A Critical Introduction , 2004 .

[46]  Pieter Kok,et al.  Geometric perspective on quantum parameter estimation , 2019, AVS Quantum Science.

[47]  Howard M. Wiseman,et al.  π-Corrected Heisenberg Limit. , 2019, Physical review letters.

[48]  M. Paris,et al.  Squeezed vacuum as a universal quantum probe , 2008, 0802.1682.

[49]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[50]  V. Giovannetti,et al.  Versatile Gaussian probes for squeezing estimation , 2017, 1703.05554.

[51]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[52]  B. Roy Frieden,et al.  Science from Fisher Information: A Unification , 2004 .

[53]  Marcin Jarzyna,et al.  True precision limits in quantum metrology , 2014, 1407.4805.

[54]  S. Paesani,et al.  Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip. , 2017, Physical review letters.

[55]  Timothy C. Ralph,et al.  Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[56]  Nathan Wiebe,et al.  Efficient Bayesian Phase Estimation. , 2015, Physical review letters.

[57]  F. Illuminati,et al.  Entanglement in continuous-variable systems: recent advances and current perspectives , 2007, quant-ph/0701221.

[58]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[59]  Daniel Braun,et al.  Neural-Network Heuristics for Adaptive Bayesian Quantum Estimation , 2020, PRX Quantum.

[60]  R. Simon,et al.  The real symplectic groups in quantum mechanics and optics , 1995, quant-ph/9509002.

[61]  Gerd Leuchs,et al.  30 years of squeezed light generation , 2015, 1511.03250.

[62]  Fabio Sciarrino,et al.  Experimental adaptive Bayesian estimation of multiple phases with limited data , 2020, npj Quantum Information.

[63]  P. Sekatski,et al.  Dynamical decoupling leads to improved scaling in noisy quantum metrology , 2015, 1512.07476.

[64]  Jesús Rubio,et al.  Bayesian multiparameter quantum metrology with limited data , 2019, Physical Review A.

[65]  Alex Monras,et al.  Phase space formalism for quantum estimation of Gaussian states , 2013, 1303.3682.