Class groups of quadratic fields II

A computation has been made of the noncyclic class groups of imaginary quadratic fields Q(\J - D ) for even and odd discriminants - D from 0 to - 25000000. Among the results are that 95% of the class groups are cyclic, and that -11203620 and -18397407 are the first discriminants of imaginary quadratic fields for which the class group has rank three in the 5-Sylow subgroup. The latter was known to be of rank three; this computation demonstrates that it is the first odd discriminant of 5-rank three or more.

[1]  Duncan A. Buell Small class numbers and extreme values of $L$-functions of quadratic fields , 1977 .

[2]  H. C. Williams,et al.  On the imaginary bicyclic biquadratic fields with class-number 2 , 1977 .

[3]  Daniel Shanks Class groups of the quadratic fields found by F. Diaz y Diaz , 1976 .

[4]  F. Diaz Sur les corps quadratiques imaginaires dont le 3-rang du groupe des classes est supérieur à 1 , 1974 .

[5]  Daniel Shanks,et al.  On the 3-rank of quadratic fields and the Euler product , 1974 .

[6]  Maurice Craig,et al.  A type of class group for imaginary quadratic fields , 1973 .

[7]  Daniel Shanks,et al.  Quadratic Fields with Four Invariants Divisible by 3 , 1973 .

[8]  Daniel Shanks New types of quadratic fields having three invariants divisible by 3 , 1972 .

[9]  Peter J. Weinberger,et al.  A quadratic field of prime discriminant requiring three generators for its class group, and related theory , 1972 .

[10]  D. Shanks Class number, a theory of factorization, and genera , 1971 .

[11]  E. Hecke Vorlesungen Uber Die Theorie Der Algebraischen Zahlen , 1970 .

[12]  R. B. Lakein,et al.  Tables of Class Numbers h(-p) for Fields Q(√-p), p ≦465071 , 1970 .

[13]  Hideo Wada A table of ideal class groups of imaginary quadratic fields , 1970 .

[14]  M. Newman Table of the Class Number h(-p) for p Prime, p ≡3 (mod 4), 101987 ≦p ≦166807 , 1969 .

[15]  E. Ordman Tables of the Class Number for Negative Prime Discriminants , 1969 .

[16]  D. Shanks On Gauss’s class number problems , 1969 .

[17]  W. Narkiewicz Class number and factorization in quadratic number fields , 1967 .

[18]  R. Lippmann Note on Irregular Discriminants , 1963 .

[19]  S. Chowla,et al.  AN EXTENSION OF HEILBRONN'S CLASS-NUMBER THEOREM , 1934 .

[20]  Arnold Scholz,et al.  Über die Beziehung der Klassenzahlen quadratischer Körper zueinander. , 1932 .