Are network motifs the spandrels of cellular complexity?

[1]  S. Gould,et al.  The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[2]  M. Kirkpatrick,et al.  The evolution of mating preferences and the paradox of the lek , 1991, Nature.

[3]  C. Moorehead All rights reserved , 1997 .

[4]  B. Kempenaers,et al.  Studying paternity and paternal care: pitfalls and problems , 1997, Animal Behaviour.

[5]  Kate E. Jones,et al.  An optimum body size for mammals? Comparative evidence from bats , 1997 .

[6]  M. Kirkpatrick,et al.  The strength of indirect selection on female mating preferences. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[8]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[9]  S. Gould The Structure of Evolutionary Theory , 2002 .

[10]  R. Solé,et al.  Selection, Tinkering, and Emergence in Complex Networks - Crossing the Land of Tinkering , 2002 .

[11]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[12]  I. Owens,et al.  Extra pair paternity in birds: a review of interspecific variation and adaptive function , 2002, Molecular ecology.

[13]  Ricard V. Solé,et al.  A Model of Large-Scale proteome Evolution , 2002, Adv. Complex Syst..

[14]  P. Phillips,et al.  Comparative quantitative genetics : evolution of the G matrix , 2002 .

[15]  Wolfgang Banzhaf,et al.  Network motifs in natural and artificial transcriptional regulatory networks , 2002, Journal of Biological Physics and Chemistry.

[16]  Albert-László Barabási,et al.  Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network , 2004, BMC Bioinformatics.

[17]  H. Kokko,et al.  The evolution of mate choice and mating biases , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  A. Arkin,et al.  Motifs, modules and games in bacteria. , 2003, Current opinion in microbiology.

[19]  M. Vergassola,et al.  An evolutionary and functional assessment of regulatory network motifs , 2005, Genome Biology.

[20]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[21]  L. Kruuk,et al.  Explaining stasis: microevolutionary studies in natural populations , 2004, Genetica.

[22]  M. Jennions,et al.  The Indirect Benefits of Mating with Attractive Males Outweigh the Direct Costs , 2005, PLoS biology.

[23]  S. L. Wong,et al.  Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network , 2005, Journal of biology.

[24]  Hernan G. Garcia Transcriptional Regulation by the Numbers , 2005 .

[25]  J. Slate,et al.  Linkage mapping reveals sex-dimorphic map distances in a passerine bird , 2005, Proceedings of the Royal Society B: Biological Sciences.

[26]  Terence Hwa,et al.  Transcriptional regulation by the numbers: models. , 2005, Current opinion in genetics & development.

[27]  Stefan Bornholdt,et al.  Topology of biological networks and reliability of information processing , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. E. Hirsch,et al.  An index to quantify an individual's scientific research output , 2005, Proc. Natl. Acad. Sci. USA.

[29]  Jeremy Schmutz,et al.  Widespread Parallel Evolution in Sticklebacks by Repeated Fixation of Ectodysplasin Alleles , 2005, Science.

[30]  L. A. Whittingham,et al.  Effects of extra-pair and within-pair reproductive success on the opportunity for selection in birds , 2005 .

[31]  J. Hirsch An index to quantify an individual's scientific output , 2005 .

[32]  Patrick C Phillips,et al.  Network thinking in ecology and evolution. , 2005, Trends in ecology & evolution.

[33]  Sergi Valverde,et al.  Network motifs in computational graphs: a case study in software architecture. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  J. Hadfield,et al.  Direct versus indirect sexual selection: genetic basis of colour, size and recruitment in a wild bird , 2006, Proceedings of the Royal Society B: Biological Sciences.

[35]  L. Gustafsson,et al.  Testing the genetics underlying the co-evolution of mate choice and ornament in the wild , 2006, Nature.

[36]  M. Jennions,et al.  The h index and career assessment by numbers. , 2006, Trends in ecology & evolution.

[37]  W. Banzhaf,et al.  Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence. , 2006, Bio Systems.

[38]  J. Slate,et al.  A predicted microsatellite map of the passerine genome based on chicken–passerine sequence similarity , 2006, Molecular ecology.

[39]  L. Simmons,et al.  Sexual selection and mate choice. , 2006, Trends in ecology & evolution.