Membrane microdomains: from seeing to understanding

The plasma membrane is a composite material, which forms a semi-permeable barrier and an interface for communication between the intracellular and extracellular environments. While the existence of membrane microdomains with nanoscale organization has been proved by the application of numerous biochemical and physical methods, direct observation of these heterogeneities using optical microscopy has remained challenging for decades, partly due to the optical diffraction limit, which restricts the resolution to ~200 nm. During the past years, new optical methods which circumvent this fundamental limit have emerged. Not only do these techniques allow direct visualization, but also quantitative characterization of nanoscopic structures. We discuss how these emerging optical methods have refined our knowledge of membrane microdomains and how they may shed light on the basic principles of the mesoscopic membrane organization.

[1]  T. Lecuit,et al.  Principles of E-Cadherin Supramolecular Organization In Vivo , 2013, Current Biology.

[2]  Andrew G. York,et al.  Instant super-resolution imaging in live cells and embryos via analog image processing , 2013, Nature Methods.

[3]  A. Gad,et al.  Spatial organization of proteins in metastasizing cells , 2013, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[4]  Steven F. Lee,et al.  Improved super-resolution microscopy with oxazine fluorophores in heavy water. , 2013, Angewandte Chemie.

[5]  M. Dahan,et al.  ViSP: representing single-particle localizations in three dimensions , 2013, Nature Methods.

[6]  P. Gönczy,et al.  Resolution Doubling in 3D-STORM Imaging through Improved Buffers , 2013, PloS one.

[7]  Alberto Diaspro,et al.  Sub-Diffraction Nano Manipulation Using STED AFM , 2013, PloS one.

[8]  Travis J Gould,et al.  Actin mediates the nanoscale membrane organization of the clustered membrane protein influenza hemagglutinin. , 2013, Biophysical journal.

[9]  Suliana Manley,et al.  Simple buffers for 3D STORM microscopy , 2013, Biomedical optics express.

[10]  Nathan H. Roy,et al.  Clustering and Mobility of HIV-1 Env at Viral Assembly Sites Predict Its Propensity To Induce Cell-Cell Fusion , 2013, Journal of Virology.

[11]  E. Margeat,et al.  Recruitment, Assembly, and Molecular Architecture of the SpoIIIE DNA Pump Revealed by Superresolution Microscopy , 2013, PLoS biology.

[12]  J. Sibarita,et al.  Real-Time Analysis and Visualization for Single-Molecule Based Super-Resolution Microscopy , 2013, PloS one.

[13]  R. Hedrich,et al.  Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3 , 2013, Proceedings of the National Academy of Sciences.

[14]  T. Kuner,et al.  Tissue Multicolor STED Nanoscopy of Presynaptic Proteins in the Calyx of Held , 2013, PloS one.

[15]  Suliana Manley,et al.  A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. , 2013, Nature chemistry.

[16]  P. Annibale,et al.  Enlightening G-protein-coupled receptors on the plasma membrane using super-resolution photoactivated localization microscopy. , 2013, Biochemical Society transactions.

[17]  M. Heilemann,et al.  Super-Resolution Microscopy Reveals Specific Recruitment of HIV-1 Envelope Proteins to Viral Assembly Sites Dependent on the Envelope C-Terminal Tail , 2013, PLoS pathogens.

[18]  Prabuddha Sengupta,et al.  Quantifying spatial organization in point-localization superresolution images using pair correlation analysis , 2013, Nature Protocols.

[19]  S. Hell,et al.  STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue. , 2013, Faraday discussions.

[20]  J. Liao,et al.  Superresolution STED microscopy reveals differential localization in primary cilia , 2013, Cytoskeleton.

[21]  Thorsten Staudt,et al.  Maturation-Dependent HIV-1 Surface Protein Redistribution Revealed by Fluorescence Nanoscopy , 2012, Science.

[22]  G. C. Rogers,et al.  Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization , 2012, Nature Cell Biology.

[23]  Laurence Pelletier,et al.  Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material , 2012, Nature Cell Biology.

[24]  J. Timlin,et al.  Characterization of differential Toll-like receptor responses below the optical diffraction limit. , 2012, Small.

[25]  György Vámosi,et al.  Plasticity of the asialoglycoprotein receptor deciphered by ensemble FRET imaging and single-molecule counting PALM imaging , 2012, Proceedings of the National Academy of Sciences.

[26]  Ronald J. Quinn,et al.  The Relationship between Fenestrations, Sieve Plates and Rafts in Liver Sinusoidal Endothelial Cells , 2012, PloS one.

[27]  A. Verkman,et al.  Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes , 2012, Journal of Cell Science.

[28]  Akihiro Kusumi,et al.  Transient GPI-anchored protein homodimers are units for raft organization and function. , 2012, Nature chemical biology.

[29]  V. Verkhusha,et al.  A FRET-facilitated photoswitching using an orange fluorescent protein with the fast photoconversion kinetics. , 2012, Journal of the American Chemical Society.

[30]  W E Moerner,et al.  STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. , 2012, Biophysical journal.

[31]  Mike Heilemann,et al.  Super-resolution Imaging Reveals the Internal Architecture of Nano-sized Syntaxin Clusters* , 2012, The Journal of Biological Chemistry.

[32]  R. Parthasarathy Rapid, accurate particle tracking by calculation of radial symmetry centers , 2012, Nature Methods.

[33]  M. Rao,et al.  Active Remodeling of Cortical Actin Regulates Spatiotemporal Organization of Cell Surface Molecules , 2012, Cell.

[34]  X. Zhuang,et al.  Statistical deconvolution for superresolution fluorescence microscopy. , 2012, Biophysical journal.

[35]  Yongdeng Zhang,et al.  Rational design of true monomeric and bright photoactivatable fluorescent proteins , 2012, Nature Methods.

[36]  H. Ewers,et al.  A simple, versatile method for GFP-based super-resolution microscopy via nanobodies , 2012, Nature Methods.

[37]  Lei Zhu,et al.  Faster STORM using compressed sensing , 2012, Nature Methods.

[38]  P. Annibale,et al.  Cell Type-specific β2-Adrenergic Receptor Clusters Identified Using Photoactivated Localization Microscopy Are Not Lipid Raft Related, but Depend on Actin Cytoskeleton Integrity* , 2012, The Journal of Biological Chemistry.

[39]  Yongdeng Zhang,et al.  A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications , 2012, Proceedings of the National Academy of Sciences.

[40]  S. Hell,et al.  Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS). , 2012, Optics express.

[41]  P. Schwille,et al.  Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. , 2012, Biochimica et biophysica acta.

[42]  Astrid Magenau,et al.  Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution , 2012, Nature Communications.

[43]  J. J. Macklin,et al.  Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution , 2011, Proceedings of the National Academy of Sciences.

[44]  J. Hofkens,et al.  Quantitative Multicolor Super-Resolution Microscopy Reveals Tetherin HIV-1 Interaction , 2011, PLoS pathogens.

[45]  Dylan T Burnette,et al.  Bayesian localisation microscopy reveals nanoscale podosome dynamics , 2011, Nature Methods.

[46]  H. Chu,et al.  The Tetherin/BST-2 Coiled-Coil Ectodomain Mediates Plasma Membrane Microdomain Localization and Restriction of Particle Release , 2011, Journal of Virology.

[47]  Suliana Manley,et al.  Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. , 2011, Immunity.

[48]  Prabuddha Sengupta,et al.  Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis , 2011, Nature Methods.

[49]  S W Hell,et al.  STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. , 2011, Biophysical journal.

[50]  Kai Simons,et al.  Membrane organization and lipid rafts. , 2011, Cold Spring Harbor perspectives in biology.

[51]  Gaudenz Danuser,et al.  Cytoskeletal Control of CD36 Diffusion Promotes Its Receptor and Signaling Function , 2011, Cell.

[52]  A. Miyawaki,et al.  Fluorescent probes for superresolution imaging of lipid domains on the plasma membrane , 2011 .

[53]  Astrid Magenau,et al.  Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events , 2011, Nature Immunology.

[54]  P. Annibale,et al.  Identification of clustering artifacts in photoactivated localization microscopy , 2011, Nature Methods.

[55]  Benjamin B. Machta,et al.  Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting , 2011, PloS one.

[56]  M. Heilemann,et al.  Direct stochastic optical reconstruction microscopy with standard fluorescent probes , 2011, Nature Protocols.

[57]  X. Zhuang,et al.  Fast three-dimensional super-resolution imaging of live cells , 2011, Nature Methods.

[58]  Xiongwu Wu,et al.  Lateral density of receptor arrays in the membrane plane influences sensitivity of the E. coli chemotaxis response , 2011, The EMBO journal.

[59]  T. Lecuit,et al.  Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis , 2011, Nature Cell Biology.

[60]  Nicolas Destainville,et al.  Clusters of proteins in biomembranes: insights into the roles of interaction potential shapes and of protein diversity. , 2011, The journal of physical chemistry. B.

[61]  Michael A Thompson,et al.  Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus. , 2011, Biophysical journal.

[62]  S. Holden,et al.  DAOSTORM: an algorithm for high- density super-resolution microscopy , 2011, Nature Methods.

[63]  Christophe Zimmer,et al.  Super-Resolution Dynamic Imaging of Dendritic Spines Using a Low-Affinity Photoconvertible Actin Probe , 2011, PloS one.

[64]  Pierre-François Lenne,et al.  Planar polarized actomyosin contractile flows control epithelial junction remodelling , 2010, Nature.

[65]  E. Bayer,et al.  Membrane rafts in plant cells. , 2010, Trends in plant science.

[66]  Michael W. Davidson,et al.  Nanoscale architecture of integrin-based cell adhesions , 2010, Nature.

[67]  Stefan W. Hell,et al.  Protein localization in electron micrographs using fluorescence nanoscopy , 2010, Nature Methods.

[68]  Akihiro Kusumi,et al.  Membrane molecules mobile even after chemical fixation , 2010, Nature Methods.

[69]  K. Oparka,et al.  Super-Resolution Imaging of Plasmodesmata Using Three-Dimensional Structured Illumination Microscopy1[W] , 2010, Plant Physiology.

[70]  T. Tkaczyk Stimulated Emission Depletion , 2010 .

[71]  J. Lippincott-Schwartz,et al.  Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. , 2010, Journal of the American Chemical Society.

[72]  Mark A. A. Neil,et al.  Dynamics of Subsynaptic Vesicles and Surface Microclusters at the Immunological Synapse , 2010, Science Signaling.

[73]  C. Zimmer,et al.  QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ , 2010, Nature Methods.

[74]  E. Jones,et al.  An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly , 2010, Nature Structural &Molecular Biology.

[75]  Keith A. Lidke,et al.  Fast, single-molecule localization that achieves theoretically minimum uncertainty , 2010, Nature Methods.

[76]  U. Schwarz,et al.  Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors. , 2010, Biophysical journal.

[77]  S. Hell,et al.  Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins. , 2010, Biophysical journal.

[78]  Kai Simons,et al.  Lipid Rafts As a Membrane-Organizing Principle , 2010, Science.

[79]  Isuru D. Jayasinghe,et al.  Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes , 2009, Proceedings of the National Academy of Sciences.

[80]  Christopher S. Chen,et al.  Faculty Opinions recommendation of Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. , 2009 .

[81]  S.W. HELL,et al.  A compact STED microscope providing 3D nanoscale resolution , 2009, Journal of microscopy.

[82]  Gerd Ulrich Nienhaus,et al.  Online image analysis software for photoactivation localization microscopy , 2009, Nature Methods.

[83]  Pere Roca-Cusachs,et al.  Clustering of α5β1 integrins determines adhesion strength whereas αvβ3 and talin enable mechanotransduction , 2009, Proceedings of the National Academy of Sciences.

[84]  Mike Heilemann,et al.  Super-resolution imaging with small organic fluorophores. , 2009, Angewandte Chemie.

[85]  T. Harris,et al.  Independent cadherin–catenin and Bazooka clusters interact to assemble adherens junctions , 2009, The Journal of cell biology.

[86]  Ned S. Wingreen,et al.  Self-Organization of the Escherichia coli Chemotaxis Network Imaged with Super-Resolution Light Microscopy , 2009, PLoS biology.

[87]  J. Lippincott-Schwartz,et al.  Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure , 2009, Proceedings of the National Academy of Sciences.

[88]  S. Hell,et al.  Direct observation of the nanoscale dynamics of membrane lipids in a living cell , 2009, Nature.

[89]  Suliana Manley,et al.  Photoactivatable mCherry for high-resolution two-color fluorescence microscopy , 2009, Nature Methods.

[90]  Kristin L. Hazelwood,et al.  A bright and photostable photoconvertible fluorescent protein for fusion tags , 2009, Nature Methods.

[91]  S. Hell,et al.  Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell , 2008, Proceedings of the National Academy of Sciences.

[92]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[93]  M. Gustafsson,et al.  Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. , 2008, Biophysical journal.

[94]  T. Lecuit,et al.  A two-tiered mechanism for stabilization and immobilization of E-cadherin , 2008, Nature.

[95]  S. Hess,et al.  Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples , 2008, Nature Methods.

[96]  E. Betzig,et al.  Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics , 2008, Nature Methods.

[97]  F. D’Amico,et al.  Quantifying immunogold labelling in transmission electron microscopy , 2008, Journal of microscopy.

[98]  D. Engelman,et al.  Protein area occupancy at the center of the red blood cell membrane , 2008, Proceedings of the National Academy of Sciences.

[99]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[100]  J. Lippincott-Schwartz,et al.  High-density mapping of single-molecule trajectories with photoactivated localization microscopy , 2008, Nature Methods.

[101]  Michael W. Davidson,et al.  Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes , 2007, Proceedings of the National Academy of Sciences.

[102]  A. IJzerman,et al.  Internalization and desensitization of adenosine receptors , 2007, Purinergic Signalling.

[103]  Samuel T. Hess,et al.  Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories , 2007, Proceedings of the National Academy of Sciences.

[104]  D. Nikolov,et al.  Cell-cell signaling via Eph receptors and ephrins. , 2007, Current opinion in cell biology.

[105]  Thorsten Lang,et al.  Anatomy and Dynamics of a Supramolecular Membrane Protein Cluster , 2007, Science.

[106]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[107]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[108]  Hervé Rigneault,et al.  Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork , 2006, The EMBO journal.

[109]  J. Freed,et al.  Coexisting domains in the plasma membranes of live cells characterized by spin-label ESR spectroscopy. , 2006, Biophysical journal.

[110]  Thorsten Lang,et al.  The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. , 2006, Biophysical journal.

[111]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[112]  V. Verkhusha,et al.  Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light , 2006, Nature Biotechnology.

[113]  I. Hagan,et al.  Warming up at the poles , 2006, EMBO reports.

[114]  Gavin MacBeath,et al.  A quantitative protein interaction network for the ErbB receptors using protein microarrays , 2006, Nature.

[115]  Hervé Rigneault,et al.  Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. , 2005, Biophysical journal.

[116]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[117]  Anil Verma,et al.  Quantitative electron microscopy and fluorescence spectroscopy of the membrane distribution of influenza hemagglutinin , 2005, The Journal of cell biology.

[118]  A. Shaw,et al.  Getting Downstream without a Raft , 2005, Cell.

[119]  Ronald D. Vale,et al.  Single-Molecule Microscopy Reveals Plasma Membrane Microdomains Created by Protein-Protein Networks that Exclude or Trap Signaling Molecules in T Cells , 2005, Cell.

[120]  Akihiro Kusumi,et al.  Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. , 2005, Annual review of biophysics and biomolecular structure.

[121]  Volker Westphal,et al.  Nanoscale resolution in the focal plane of an optical microscope. , 2005, Physical review letters.

[122]  I. Dikic,et al.  Compartmentalization of growth factor receptor signalling. , 2005, Current opinion in cell biology.

[123]  N. Socci,et al.  Nonequilibrium raftlike membrane domains under continuous recycling. , 2005, Physical review letters.

[124]  A. Miyawaki,et al.  Regulated Fast Nucleocytoplasmic Shuttling Observed by Reversible Protein Highlighting , 2004, Science.

[125]  T. Yanagida,et al.  EGF signalling amplification induced by dynamic clustering of EGFR. , 2004, Biochemical and biophysical research communications.

[126]  J. Wiedenmann,et al.  EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[127]  I. V. Polozov,et al.  Liquid domains in vesicles investigated by NMR and fluorescence microscopy. , 2004, Biophysical journal.

[128]  D. Siegmund,et al.  Stochastic model of protein-protein interaction: why signaling proteins need to be colocalized. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[129]  Ira,et al.  Nanoscale Organization of Multiple GPI-Anchored Proteins in Living Cell Membranes , 2004, Cell.

[130]  Tony Pawson,et al.  Specificity in Signal Transduction From Phosphotyrosine-SH2 Domain Interactions to Complex Cellular Systems , 2004, Cell.

[131]  R. Hooke Micrographia: Or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses With Observations and Inquiries Thereupon , 2003 .

[132]  Shiang-Jong Tzeng,et al.  Location is everything: lipid rafts and immune cell signaling. , 2003, Annual review of immunology.

[133]  Z. Kam,et al.  Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells , 2003, Journal of Cell Science.

[134]  Barbara Baird,et al.  Ordered and disordered phases coexist in plasma membrane vesicles of RBL-2H3 mast cells. An ESR study. , 2003, Biophysical journal.

[135]  C. Martínez-A,et al.  Pathogens: raft hijackers , 2003, Nature Reviews Immunology.

[136]  Blagoy Blagoev,et al.  A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling , 2003, Nature Biotechnology.

[137]  D. Daleke Regulation of transbilayer plasma membrane phospholipid asymmetry Published, JLR Papers in Press, December 16, 2002. DOI 10.1194/jlr.R200019-JLR200 , 2003, Journal of Lipid Research.

[138]  Robert G. Parton,et al.  Direct visualization of Ras proteins in spatially distinct cell surface microdomains , 2003, The Journal of cell biology.

[139]  H. Heerklotz Triton promotes domain formation in lipid raft mixtures. , 2002, Biophysical journal.

[140]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[141]  T. McIntosh,et al.  Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. , 2002, Biophysical journal.

[142]  Y. Yarden,et al.  Untangling the ErbB signalling network , 2001, Nature Reviews Molecular Cell Biology.

[143]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[144]  L G Griffith,et al.  Cell adhesion and motility depend on nanoscale RGD clustering. , 2000, Journal of cell science.

[145]  Andrew Pekosz,et al.  Influenza Virus Assembly and Lipid Raft Microdomains: a Role for the Cytoplasmic Tails of the Spike Glycoproteins , 2000, Journal of Virology.

[146]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[147]  Gerald Kada,et al.  Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy , 2000, The EMBO journal.

[148]  O. Mandelboim,et al.  The human natural killer cell immune synapse. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[149]  J. Korlach,et al.  Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[150]  J. Korlach,et al.  Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. , 1999, Cytometry.

[151]  Colin R. F. Monks,et al.  Three-dimensional segregation of supramolecular activation clusters in T cells , 1998, Nature.

[152]  S. Mayor,et al.  GPI-anchored proteins are organized in submicron domains at the cell surface , 1998, Nature.

[153]  P. Macdonald,et al.  Domains in cationic lipid plus polyelectrolyte bilayer membranes: detection and characterization via 2H nuclear magnetic resonance. , 1997, Biochemistry.

[154]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[155]  S. Damjanovich,et al.  Dynamic receptor superstructures at the plasma membrane , 1997, Quarterly Reviews of Biophysics.

[156]  P. Macdonald,et al.  DNA-induced lateral segregation of cationic amphiphiles in lipid bilayer membranes as detected via 2H NMR. , 1996, Biochemistry.

[157]  K. Jacobson,et al.  Revisiting the fluid mosaic model of membranes. , 1995, Science.

[158]  W. Lederer,et al.  The control of calcium release in heart muscle. , 1995, Science.

[159]  A Kusumi,et al.  Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis , 1994, The Journal of cell biology.

[160]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[161]  A. Kusumi,et al.  Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. , 1993, Biophysical journal.

[162]  A. van der Ende,et al.  Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol. , 1993, The Journal of biological chemistry.

[163]  M. Hollingsworth,et al.  An X-Ray Diffraction Study , 1992 .

[164]  Deborah A. Brown,et al.  Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface , 1992, Cell.

[165]  D. E. Wolf,et al.  Lipid domains in the ram sperm plasma membrane demonstrated by differential scanning calorimetry. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[166]  Joseph Schlessinger,et al.  Signal transduction by receptors with tyrosine kinase activity , 1990, Cell.

[167]  H. Schindler,et al.  Particle counting by fluorescence correlation spectroscopy. Simultaneous measurement of aggregation and diffusion of molecules in solutions and in membranes. , 1988, Biophysical journal.

[168]  G van Meer,et al.  Lipid sorting in epithelial cells. , 1988, Biochemistry.

[169]  E. Gratton,et al.  Fluorescence lifetime distributions of 1,6-diphenyl-1,3,5-hexatriene reveal the effect of cholesterol on the microheterogeneity of erythrocyte membrane. , 1988, Biochimica et biophysica acta.

[170]  D. Melchior Lipid domains in fluid membranes: a quick-freeze differential scanning calorimetry study. , 1986, Science.

[171]  R. Klausner,et al.  LIPID DOMAINS IN MEMBRANES * , 1982, Annals of the New York Academy of Sciences.

[172]  R D Klausner,et al.  The concept of lipid domains in membranes , 1982, The Journal of cell biology.

[173]  D. E. Wolf,et al.  Changes in the organization of the sea urchin egg plasma membrane upon fertilization: indications from the lateral diffusion rates of lipid-soluble fluorescent dyes. , 1981, Developmental biology.

[174]  R. Klausner,et al.  Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. , 1980, The Journal of biological chemistry.

[175]  F. Wunderlich,et al.  Thermotropic fluid goes to ordered "discontinuous" phase separation in microsomal lipids of Tetrahymena. An X-ray diffraction study. , 1978, Biochemistry.

[176]  P. Fahey,et al.  Lateral diffusion in planar lipid bilayers. , 1977, Science.

[177]  J M Sturtevant,et al.  Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[178]  S. Hui,et al.  Direct observation of domains in wet lipid bilayers , 1975, Science.

[179]  E. Sackmann,et al.  Spin labels as enzyme substrates. Heterogeneous lipid distribution in liver microsomal membranes. , 1973, Biochimica et biophysica acta.

[180]  S. Singer,et al.  The Fluid Mosaic Model of the Structure of Cell Membranes , 1972, Science.

[181]  Peter Beike,et al.  Intermolecular And Surface Forces , 2016 .

[182]  J. Bewersdorf,et al.  STED Microscopy , 2013 .

[183]  T. Lecuit,et al.  Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis , 2011, Nature Cell Biology.

[184]  Mark M Davis,et al.  TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation , 2010, Nature Immunology.

[185]  Benjamin Harke,et al.  Three-dimensional nanoscopy of colloidal crystals. , 2008, Nano letters.

[186]  K. Jacobson,et al.  New insights into membrane dynamics from the analysis of cell surface interactions by physical methods. , 1995, Current opinion in cell biology.

[187]  J. L. Wang,et al.  Lateral diffusion of phospholipids in the plasma membrane of soybean protoplasts: Evidence for membrane lipid domains. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[188]  P. Knowles,et al.  ESR spin-label studies of lipid-protein interactions in membranes. , 1982, Biophysical journal.

[189]  J. Rothman,et al.  Membrane asymmetry. , 1977, Science.

[190]  E. Sackmann,et al.  Direct evidence of charge‐induced lipid domain structure in model membranes , 1977, FEBS letters.

[191]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.

[192]  J. Maurat LORD RAYLEIGH. — On the manufacture and theory of diffraction gratings (Fabrication et théorie des réseaux de diffraction); Philosophical Magazine, février et mars 1874. p. 81 et 193 , 1874 .