Estimation of entropy rate in a fast physical random-bit generator using a chaotic semiconductor laser with intrinsic noise.

We analyze the time for growth of bit entropy when generating nondeterministic bits using a chaotic semiconductor laser model. The mechanism for generating nondeterministic bits is modeled as a 1-bit sampling of the intensity of light output. Microscopic noise results in an ensemble of trajectories whose bit entropy increases with time. The time for the growth of bit entropy, called the memory time, depends on both noise strength and laser dynamics. It is shown that the average memory time decreases logarithmically with increase in noise strength. It is argued that the ratio of change in average memory time with change in logarithm of noise strength can be used to estimate the intrinsic dynamical entropy rate for this method of random bit generation. It is also shown that in this model the entropy rate corresponds to the maximum Lyapunov exponent.

[1]  S. Deligiannidis,et al.  Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit. , 2010, Optics express.

[2]  Kestutis Pyragas SYNCHRONIZATION OF COUPLED TIME-DELAY SYSTEMS : ANALYTICAL ESTIMATIONS , 1998 .

[3]  Pu Li,et al.  All-optical fast random number generator. , 2010, Optics express.

[4]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[5]  Rajarshi Roy,et al.  Scalable parallel physical random number generator based on a superluminescent LED. , 2011, Optics letters.

[6]  Alessandro Trifiletti,et al.  A High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications on a Smart Card IC , 2003, IEEE Trans. Computers.

[7]  FRANCIS GALTON Dice for Statistical Experiments , 1890, Nature.

[8]  Rajarshi Roy,et al.  Chaotic lasers: The world's fastest dice , 2008 .

[9]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[10]  Atsushi Uchida,et al.  Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. , 2010, Optics express.

[11]  Werner Schindler,et al.  Evaluation Criteria for True (Physical) Random Number Generators Used in Cryptographic Applications , 2002, CHES.

[12]  A. W. Sharpe,et al.  A High Speed, Post-Processing Free, Quantum Random Number Generator , 2008, ArXiv.

[13]  I. Kanter,et al.  An optical ultrafast random bit generator , 2010 .

[14]  H. Lo,et al.  High-speed quantum random number generation by measuring phase noise of a single-mode laser. , 2010, Optics letters.

[15]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[16]  Kenichi Arai,et al.  Chaos laser chips with delayed optical feedback using a passive ring waveguide. , 2011, Optics express.

[17]  R. Dong,et al.  A generator for unique quantum random numbers based on vacuum states , 2010 .

[18]  Ingo Fischer,et al.  Picosecond intensity statistics of semiconductor lasers operating in the low-frequency fluctuation regime , 1999 .

[19]  I Kanter,et al.  Ultrahigh-speed random number generation based on a chaotic semiconductor laser. , 2009, Physical review letters.

[20]  R. Toral,et al.  Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop , 2005, IEEE Journal of Quantum Electronics.

[21]  Rajarshi Roy,et al.  Using synchronization for prediction of high-dimensional chaotic dynamics. , 2008, Physical review letters.

[22]  Roy,et al.  Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. , 1988, Physical review. A, General physics.

[23]  Roy,et al.  Amplification of intrinsic noise in a chaotic multimode laser system. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[24]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[25]  Atsushi Uchida,et al.  Fast nondeterministic random-bit generation using on-chip chaos lasers , 2011 .

[26]  H. Weinfurter,et al.  A fast and compact quantum random number generator , 1999, quant-ph/9912118.

[27]  W. T. Holman,et al.  An integrated analog/digital random noise source , 1997 .

[28]  S. Yoshimori,et al.  Characteristics of Fast Physical Random Bit Generation Using Chaotic Semiconductor Lasers , 2009, IEEE Journal of Quantum Electronics.

[29]  Atsushi Uchida,et al.  Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers. , 2009, Optics express.

[30]  Trevor Mudge,et al.  True Random Number Generator With a Metastability-Based Quality Control , 2008, IEEE J. Solid State Circuits.

[31]  Fox,et al.  Amplification of intrinsic fluctuations by chaotic dynamics in physical systems. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[32]  Caitlin R. S. Williams,et al.  Fast physical random number generator using amplified spontaneous emission. , 2010, Optics express.