Genetic basis of myasthenia gravis - a comprehensive review.

[1]  J. Agrewala,et al.  Friendly pathogens: prevent or provoke autoimmunity , 2014, Critical reviews in microbiology.

[2]  P. Gaffney,et al.  Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren’s syndrome , 2013, Nature Genetics.

[3]  I. Illa,et al.  Myasthenia gravis and the neuromuscular junction , 2013, Current opinion in neurology.

[4]  N. Rao,et al.  The role of miRNA in inflammation and autoimmunity. , 2013, Autoimmunity reviews.

[5]  S. Berrih-Aknin,et al.  Autoimmune myasthenia gravis: autoantibody mechanisms and new developments on immune regulation , 2013, Current opinion in neurology.

[6]  D. Geng,et al.  Identification of Novel MicroRNA Signatures Linked to Experimental Autoimmune Myasthenia Gravis Pathogenesis: Down-Regulated miR-145 Promotes Pathogenetic Th17 Cell Response , 2013, Journal of Neuroimmune Pharmacology.

[7]  T. Fukuda,et al.  Thymus histology and concomitant autoimmune diseases in Japanese patients with muscle‐specific receptor tyrosine kinase‐antibody‐positive myasthenia gravis , 2013, European journal of neurology.

[8]  Aly A. Khan,et al.  Gender bias in autoimmunity is influenced by microbiota. , 2013, Immunity.

[9]  H. Hakonarson,et al.  Network-based multiple sclerosis pathway analysis with GWAS data from 15,000 cases and 30,000 controls. , 2013, American journal of human genetics.

[10]  Jianwen Liu,et al.  MiR-320a is Downregulated in Patients with Myasthenia Gravis and Modulates Inflammatory Cytokines Production by Targeting Mitogen-activated Protein Kinase 1 , 2013, Journal of Clinical Immunology.

[11]  Ling Yin,et al.  A cohort study on myasthenia gravis patients in China , 2013, Neurological Sciences.

[12]  Han Yang,et al.  FOXP3 −3279 and IVS9+459 polymorphisms are associated with genetic susceptibility to myasthenia gravis , 2013, Neuroscience Letters.

[13]  Lorna M. Lopez,et al.  A Meta-Analysis of Thyroid-Related Traits Reveals Novel Loci and Gender-Specific Differences in the Regulation of Thyroid Function , 2013, PLoS genetics.

[14]  E. Fadel,et al.  Implication of double‐stranded RNA signaling in the etiology of autoimmune myasthenia gravis , 2013, Annals of neurology.

[15]  W. Gong,et al.  Functional Promoter -308G>A Variant in Tumor Necrosis Factor α Gene Is Associated with Risk and Progression of Gastric Cancer in a Chinese Population , 2013, PloS one.

[16]  T. Glant,et al.  Genetics of Rheumatoid Arthritis — A Comprehensive Review , 2013, Clinical Reviews in Allergy & Immunology.

[17]  Soumya Raychaudhuri,et al.  Risk for myasthenia gravis maps to a 151Pro→Ala change in TNIP1 and to human leukocyte antigen‐B*08 , 2012, Annals of neurology.

[18]  M. Gattellari,et al.  A national epidemiological study of Myasthenia Gravis in Australia , 2012, European journal of neurology.

[19]  P. Gaffney,et al.  Association of two independent functional risk haplotypes in TNIP1 with systemic lupus erythematosus. , 2012, Arthritis and rheumatism.

[20]  G. Marfia,et al.  Association of HLA-DQB1∗05:02 and DRB1∗16 Alleles with Late-Onset, Nonthymomatous, AChR-Ab-Positive Myasthenia Gravis , 2012, Autoimmune diseases.

[21]  Fangyuan Zou,et al.  Altered let-7 expression in Myasthenia gravis and let-7c mediated regulation of IL-10 by directly targeting IL-10 in Jurkat cells. , 2012, International immunopharmacology.

[22]  Mark Daly,et al.  What have we learned from six years of GWAS in autoimmune diseases, and what is next? , 2012, Current opinion in immunology.

[23]  G. Patrinos,et al.  Genetics of Myasthenia Gravis: A Case-Control Association Study in the Hellenic Population , 2012, Clinical & developmental immunology.

[24]  Yan Li,et al.  A retrospective review of 15 patients with familial myasthenia gravis over a period of 25 years , 2012, Neurological Sciences.

[25]  Janel O. Johnson,et al.  A candidate gene for autoimmune myasthenia gravis , 2012, Neurology.

[26]  S. Luo,et al.  HLA-DQA1*03:02/DQB1*03:03:02 is strongly associated with susceptibility to childhood-onset ocular myasthenia gravis in Southern Han Chinese , 2012, Journal of Neuroimmunology.

[27]  B. Aneskievich,et al.  Emerging roles for TNIP1 in regulating post-receptor signaling. , 2012, Cytokine & growth factor reviews.

[28]  B. Lie,et al.  Late Onset Myasthenia Gravis Is Associated with HLA DRB1*15:01 in the Norwegian Population , 2012, PloS one.

[29]  M. Heneghan,et al.  Twin studies in autoimmune disease: genetics, gender and environment. , 2012, Journal of autoimmunity.

[30]  A. Rudensky,et al.  Regulatory T cells: mechanisms of differentiation and function. , 2012, Annual review of immunology.

[31]  J. Barrett From HLA association to function , 2012, Nature Genetics.

[32]  R. Bergamaschi,et al.  Epidemiology and Geographical Variation of Myasthenia Gravis in the Province of Pavia, Italy , 2012, Neuroepidemiology.

[33]  A. Mussi,et al.  PTPN22 and myasthenia gravis: Replication in an Italian population and meta-analysis of literature data , 2012, Neuromuscular Disorders.

[34]  A. Falus,et al.  Interleukin-4 receptor alpha polymorphisms in autoimmune myasthenia gravis in a Caucasian population. , 2012, Human immunology.

[35]  P. Visscher,et al.  Five years of GWAS discovery. , 2012, American journal of human genetics.

[36]  Robert M. Plenge,et al.  Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis , 2011, Nature Genetics.

[37]  G. Tsokos,et al.  Epigenetic mechanisms in systemic lupus erythematosus and other autoimmune diseases. , 2011, Trends in molecular medicine.

[38]  R. Płoski,et al.  The Genetic Basis of Graves' Disease , 2011, Current genomics.

[39]  M. Cusick,et al.  Molecular Mimicry as a Mechanism of Autoimmune Disease , 2011, Clinical Reviews in Allergy & Immunology.

[40]  Hai-feng Li,et al.  Association between HLA-DRB1 and myasthenia gravis in a northern Han Chinese population , 2011, Journal of Clinical Neuroscience.

[41]  L. Gutmann,et al.  Discordant thymectomy in identical twins concordant for myasthenia gravis. , 2011, Annals of internal medicine.

[42]  R. Mantegazza,et al.  The thymus in myasthenia gravis: Site of “innate autoimmunity”? , 2011, Muscle & nerve.

[43]  C. Butts,et al.  Intercommunication between the Neuroendocrine and Immune Systems: Focus on Myasthenia Gravis , 2011, Neuroimmunomodulation.

[44]  A. Butte,et al.  Sex differences in disease risk from reported genome-wide association study findings , 2011, Human Genetics.

[45]  P. Gregersen,et al.  Concomitant autoimmunity in myasthenia gravis — Lack of association with IgA deficiency , 2011, Journal of Neuroimmunology.

[46]  D. Bonifati,et al.  Change in Myasthenia Gravis Epidemiology in Trento, Italy, after Twenty Years , 2011, Neuroepidemiology.

[47]  J. Kira,et al.  Characteristics of myasthenia gravis according to onset-age: Japanese nationwide survey , 2011, Journal of the Neurological Sciences.

[48]  L. Hammarström,et al.  Utilizing Twins Concordance Rates to Infer the Predisposition to Myasthenia Gravis , 2011, Twin Research and Human Genetics.

[49]  C. Carcassi,et al.  Familial autoimmune MuSK positive myasthenia gravis , 2011, Journal of Neurology.

[50]  Shigeaki Suzuki,et al.  Clinical and immunological differences between early and late-onset myasthenia gravis in Japan , 2011, Journal of Neuroimmunology.

[51]  M. Daly,et al.  Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology , 2011, PLoS genetics.

[52]  Longen Yang,et al.  Frequency of Autoimmune Diseases in Myasthenia Gravis: A Systematic Review , 2011, The International journal of neuroscience.

[53]  S. Tóth,et al.  A novel galectin-1 and interleukin 2 receptor β haplotype is associated with autoimmune myasthenia gravis , 2010, Journal of Neuroimmunology.

[54]  H. Utsumi,et al.  Clinical implication of peripheral CD4+CD25+ regulatory T cells and Th17 cells in myasthenia gravis patients , 2010, Journal of Neuroimmunology.

[55]  E. Granieri,et al.  Myasthenia gravis: a changing pattern of incidence , 2010, Journal of Neurology.

[56]  H. Tseng,et al.  Nationwide Population-Based Epidemiological Study of Myasthenia Gravis in Taiwan , 2010, Neuroepidemiology.

[57]  K. Berger,et al.  The autoimmunity-related polymorphism PTPN22 1858C/T is associated with anti-titin antibody-positive myasthenia gravis. , 2009, Human immunology.

[58]  J. Aarseth,et al.  Interleukin-10 promoter polymorphisms in myasthenia gravis , 2009, Journal of Neuroimmunology.

[59]  D. Sanders,et al.  Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity , 2009, The Lancet Neurology.

[60]  E. Stålberg,et al.  Monozygous twins with neuromuscular transmission defects at opposite sides of the motor endplate , 2009, Acta neurologica Scandinavica.

[61]  S. Mastana,et al.  Tumor necrosis factor alpha -308 gene locus promoter polymorphism: an analysis of association with health and disease. , 2009, Biochimica et biophysica acta.

[62]  M. Marino,et al.  HLA class II allele analysis in MuSK-positive myasthenia gravis suggests a role for DQ5 , 2009, Neurology.

[63]  Cisca Wijmenga,et al.  Shared and distinct genetic variants in type 1 diabetes and celiac disease. , 2008, The New England journal of medicine.

[64]  S. Oshima,et al.  ABIN-1 is a Ubiquitin Sensor that Restricts Cell Death and Sustains Embryonic Development , 2008, Nature.

[65]  V. Bajic,et al.  Prioritizing genes of potential relevance to diseases affected by sex hormones: an example of Myasthenia Gravis , 2008, BMC Genomics.

[66]  L. Klareskog,et al.  Identification of CTLA-4 isoforms produced by alternative splicing and their association with myasthenia gravis. , 2008, Clinical immunology.

[67]  Yaofeng Zhao,et al.  PTPN22 R620W promotes production of anti-AChR autoantibodies and IL-2 in myasthenia gravis , 2008, Journal of Neuroimmunology.

[68]  V. Dötsch,et al.  Ubiquitin binding mediates the NF-κB inhibitory potential of ABIN proteins , 2008, Oncogene.

[69]  H. Müller-Hermelink,et al.  Common Cellular and Diverse Genetic Basis of Thymoma‐associated Myasthenia Gravis , 2008, Annals of the New York Academy of Sciences.

[70]  Patrice Nancy,et al.  Regulatory and Pathogenic Mechanisms in Human Autoimmune Myasthenia Gravis , 2008, Annals of the New York Academy of Sciences.

[71]  J. Verschuuren,et al.  FAMILIAL OCCURRENCE OF AUTOIMMUNE MYASTHENIA GRAVIS WITH DIFFERENT ANTIBODY SPECIFICITY , 2008, Neurology.

[72]  James G. R. Gilbert,et al.  Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project , 2008, Immunogenetics.

[73]  R. Pirskanen,et al.  Two SNPs in the promoter region of the CTLA‐4 gene affect binding of transcription factors and are associated with human myasthenia gravis , 2007, Journal of internal medicine.

[74]  E. Thorsby,et al.  Polymorphisms in the cathepsin L2 (CTSL2) gene show association with type 1 diabetes and early-onset myasthenia gravis. , 2007, Human immunology.

[75]  X. Ke,et al.  An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus , 2007, Nature.

[76]  Y. Parman,et al.  Polymorphisms of interferon-γ, interleukin-10, and interleukin-12 genes in myasthenia gravis , 2007 .

[77]  A. Vincent,et al.  Strong association of MuSK antibody–positive myasthenia gravis and HLA-DR14-DQ5 , 2006, Neurology.

[78]  Y. Abe,et al.  Induction of myasthenia by immunization against muscle-specific kinase. , 2006, The Journal of clinical investigation.

[79]  J. Jais,et al.  Association of the PTPN22*R620W polymorphism with autoimmune myasthenia gravis , 2006, Annals of neurology.

[80]  A. Saoudi,et al.  Estrogen Enhances Susceptibility to Experimental Autoimmune Myasthenia Gravis by Promoting Type 1-Polarized Immune Responses1 , 2005, The Journal of Immunology.

[81]  P. Christadoss,et al.  Effects of Cytokines on Acetylcholine Receptor Expression: Implications for Myasthenia Gravis 1 , 2005, The Journal of Immunology.

[82]  Patrice Nancy,et al.  Differential estrogen receptor expression in autoimmune myasthenia gravis. , 2005, Endocrinology.

[83]  J. Granados,et al.  Tumor necrosis factor-alpha -308 promoter polymorphism contributes independently to HLA alleles in the severity of rheumatoid arthritis in Mexicans. , 2005, Journal of autoimmunity.

[84]  A. Saoudi,et al.  Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. , 2005, Blood.

[85]  J. Dausset,et al.  Pleiotropic effects of the 8.1 HLA haplotype in patients with autoimmune myasthenia gravis and thymus hyperplasia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Steven J. Schrodi,et al.  A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. , 2004, American journal of human genetics.

[87]  B. Eymard,et al.  Genetic control of autoantibody expression in autoimmune myasthenia gravis: role of the self-antigen and of HLA-linked loci , 2004, Genes and Immunity.

[88]  Nunzio Bottini,et al.  A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes , 2004, Nature Genetics.

[89]  R. Pirskanen,et al.  The autoimmune T and B cell repertoires in monozygotic twins discordant for myasthenia gravis , 2004, Journal of Neuroimmunology.

[90]  D. Bonifati,et al.  Lack of association between acetylcholine receptor ϵ polymorphisms and early‐onset myasthenia gravis , 2004, Muscle & nerve.

[91]  M. Cuccia,et al.  Pathogenesis of autoimmune diseases associated with 8.1 ancestral haplotype: a genetically determined defect of C4 influences immunological parameters of healthy carriers of the haplotype. , 2003, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[92]  R. Pirskanen,et al.  Epidemiology of Myasthenia gravis: A Population-Based Study in Stockholm, Sweden , 2002, Neuroepidemiology.

[93]  C. Caruso,et al.  Pathogenesis of autoimmune diseases associated with 8.1 ancestral haplotype: effect of multiple gene interactions. , 2002, Autoimmunity reviews.

[94]  D. Bertrand,et al.  Neuronal nicotinic receptors: from protein structure to function , 2001, FEBS letters.

[95]  K. Lindblad,et al.  Dominantly inherited familial myasthenia gravis as a separate genetic entity without involvement of defined candidate gene loci. , 2001, International journal of molecular medicine.

[96]  M. Bunce,et al.  A susceptibility region for myasthenia gravis extending into the HLA-class I sector telomeric to HLA-C. , 1999, Human immunology.

[97]  H. Müller-Hermelink,et al.  Association of acetylcholine receptor α-subunit gene expression in mixed thymoma with myasthenia gravis , 1999, Neurology.

[98]  N. Gilhus,et al.  TNFA and TNFB polymorphisms in myasthenia gravis. , 1999, Archives of neurology.

[99]  R. Pirskanen,et al.  Tumour necrosis factor-α polymorphism and secretion in myasthenia gravis , 1999, Journal of Neuroimmunology.

[100]  P. Tonali,et al.  Tumour necrosis factor beta gene polymorphisms in myasthenia gravis. , 1998, European journal of immunogenetics : official journal of the British Society for Histocompatibility and Immunogenetics.

[101]  B. Eymard,et al.  No evidence for an association of AChR beta-subunit gene (CHRNB1) with myasthenia gravis , 1997, Journal of Neuroimmunology.

[102]  L. Abraham,et al.  The −308 tumor necrosis factor-α promoter polymorphism effects transcription , 1997 .

[103]  J. Newsom-Davis,et al.  Human muscle acetylcholine receptor alpha-subunit gene (CHRNA1) association with autoimmune myasthenia gravis in black, mixed-ancestry and Caucasian subjects. , 1996, Journal of autoimmunity.

[104]  U. Theile,et al.  [Effect of heredity and environment in immune diseases. Presentation of twin data]. , 1994, Medizinische Klinik.

[105]  H. Hart,et al.  A pair of monozygotic twins who are concordant for myasthenia gravis but became discordant for systemic lupus erythematosus post-thymectomy. , 1991, Arthritis and rheumatism.

[106]  H. Eng,et al.  B cell and autoantibody repertoire in a pair of monozygotic twins discordant for myasthenia gravis. , 1989, Clinical immunology and immunopathology.

[107]  E. Dias-Tosta,et al.  [Familial myasthenia gravis: a case report in identical twins]. , 1989, Arquivos de neuro-psiquiatria.

[108]  J. Murphy,et al.  Myasthenia gravis in identical twins , 1986, Neurology.

[109]  Vasil'ev Vn,et al.  Thymectomy for myasthenia in twin sisters , 1984 .

[110]  M. Perlow,et al.  Myasthenia gravis in monozygotic twins. Clinical follow-up nine years after thymectomy. , 1984, Archives of neurology.

[111]  N. Talal,et al.  Monozygotic twins with Klinefelter's syndrome discordant for systemic lupus erythematosus and symptomatic myasthenia gravis. , 1978, Arthritis and rheumatism.

[112]  J. Lindstrom,et al.  Antibody to acetylcholine receptor in myasthenia gravis , 1976, Neurology.

[113]  D. Grob,et al.  Myasthenia gravis occurring in twins , 1971, Journal of neurology, neurosurgery, and psychiatry.

[114]  C. Herrmann THE FAMILIAL OCCURRENCE OF MYASTHENIA GRAVIS * , 1971, Annals of the New York Academy of Sciences.

[115]  M. Harada,et al.  A case of myasthenia gravis of identical twin brothers. , 1966, International surgery.

[116]  J. Simcock,et al.  Myasthenia Gravis in Identical Twins , 1966, British medical journal.

[117]  M. Alter,et al.  Myasthenia gravis in one monozygotic twin , 1960, Neurology.

[118]  Judy H. Cho,et al.  Materials for : Host-microbe interactions shape genetic risk for inflammatory bowel disease , 2012 .

[119]  Y H Lee,et al.  The PTPN22 C1858T functional polymorphism and autoimmune diseases--a meta-analysis. , 2007, Rheumatology.

[120]  B. Eymard,et al.  Association of the gene encoding the δ-subunit of the muscle acetylcholine receptor (CHRND) with acquired autoimmune myasthenia gravis , 2004, Genes and Immunity.

[121]  G. O’Keefe,et al.  The G-->A single nucleotide polymorphism at the -308 position in the tumor necrosis factor-alpha promoter increases the risk for severe sepsis after trauma. , 2002, The Journal of trauma.

[122]  O. Sidorova,et al.  [Twin studies of myasthenia]. , 1997, Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.

[123]  A. Szobor Familial myasthenia gravis: nine patients in two generations. , 1991, Acta medica Hungarica.

[124]  A. Engel,et al.  Mechanisms of acetylcholine receptor loss from the neuromuscular junction. , 1982, Ciba Foundation symposium.

[125]  C. Cardwell,et al.  Open Access Research Article a Systematic Review of Population Based Epidemiological Studies in Myasthenia Gravis , 2022 .