Rotating Ring–Disk Electrode Study of Oxygen Evolution at a Perovskite Surface: Correlating Activity to Manganese Concentration

Transition-metal oxides with the perovskite structure are promising catalysts to promote the kinetics of the oxygen evolution reaction (OER). To improve the activity and stability of these catalysts, a deeper understanding about the active site, the underlying reaction mechanism, and possible side reactions is necessary. We chose smooth epitaxial (100)-oriented La0.6Sr0.4MnO3 (LSMO) films grown on Nb:SrTiO3 (STNO) as a model electrode to investigate OER activity and stability using the rotating ring−disk electrode (RRDE) method. Careful electrochemical characterization of various films in the thickness range between 10 and 200 nm yields an OER activity of the epitaxial LSMO surface of 100 μA/cm2ox at 1.65 V vs RHE, which is among the highest reported for LSMO and close to (110)-oriented IrO2. Detailed post-mortem analysis using XPS, XRD, and AFM revealed the high structural and morphological stability of LSMO after OER. The observed correlation between activity and Mn vacancies on the surface suggested Mn...

[1]  Ho Nyung Lee,et al.  Enhancing Perovskite Electrocatalysis through Strain Tuning of the Oxygen Deficiency. , 2016, Journal of the American Chemical Society.

[2]  William G. Hardin,et al.  Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts , 2016, Nature Communications.

[3]  Reshma R. Rao,et al.  pH dependence of OER activity of oxides: Current and future perspectives , 2016 .

[4]  A. Grimaud,et al.  Anionic redox processes for electrochemical devices. , 2016, Nature materials.

[5]  A. Kolpak,et al.  A Fundamental Relationship between Reaction Mechanism and Stability in Metal Oxide Catalysts for Oxygen Evolution , 2016 .

[6]  R. Schlögl,et al.  Enhancement of Stability and Activity of MnOx/Au Electrocatalysts for Oxygen Evolution through Adequate Electrolyte Composition , 2015 .

[7]  Roy G. Gordon,et al.  Alkaline quinone flow battery , 2015, Science.

[8]  M. Nachtegaal,et al.  Superior Bifunctional Electrocatalytic Activity of Ba0.5Sr0.5Co0.8Fe0.2O3‐δ/Carbon Composite Electrodes: Insight into the Local Electronic Structure , 2015 .

[9]  L. Giordano,et al.  Reactivity of Perovskites with Water: Role of Hydroxylation in Wetting and Implications for Oxygen Electrocatalysis , 2015 .

[10]  S. Techert,et al.  Temperature- and doping-dependent optical absorption in the small-polaron system Pr1−xCaxMnO3. , 2015 .

[11]  Yang Shao-Horn,et al.  Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis , 2015 .

[12]  R. Memming Semiconductor Electrochemistry: Memming/Semiconductor Electrochemistry , 2015 .

[13]  T. Venkatesan,et al.  Highly Active Epitaxial La(1-x)Sr(x)MnO3 Surfaces for the Oxygen Reduction Reaction: Role of Charge Transfer. , 2015, The journal of physical chemistry letters.

[14]  M. Beleggia,et al.  Environmental TEM Study of Electron Beam Induced Electrochemistry of Pr0.64Ca0.36MnO3 Catalysts for Oxygen Evolution , 2015 .

[15]  Y. Shao-horn,et al.  Role of Strain and Conductivity in Oxygen Electrocatalysis on LaCoO3 Thin Films. , 2015, The journal of physical chemistry letters.

[16]  I. Chorkendorff,et al.  Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02685c Click here for additional data file. , 2014, Chemical science.

[17]  I. Chorkendorff,et al.  Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses , 2014 .

[18]  M. Chi,et al.  Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case , 2014 .

[19]  F. Tietz,et al.  Evaluation of perovskites as electrocatalysts for the oxygen evolution reaction. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  Y. Shao-horn,et al.  Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2. , 2014, The journal of physical chemistry letters.

[21]  A. Knop‐Gericke,et al.  In Situ XANES/XPS Investigation of Doped Manganese Perovskite Catalysts , 2014 .

[22]  I. Takeuchi,et al.  La(0.8)Sr(0.2)MnO(3-δ) decorated with Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ): a bifunctional surface for oxygen electrocatalysis with enhanced stability and activity. , 2014, Journal of the American Chemical Society.

[23]  J. Storey,et al.  Influence of La and Mn vacancies on the electronic and magnetic properties of LaMnO3 thin films grown by pulsed laser deposition , 2014, 1401.2820.

[24]  A. Manthiram,et al.  Role of the Morphology and Surface Planes on the Catalytic Activity of Spinel LiMn1.5Ni0.5O4 for Oxygen Evolution Reaction , 2014 .

[25]  T. Fukutsuka,et al.  Catalytic Roles of Perovskite Oxides in Electrochemical Oxygen Reactions in Alkaline Media , 2014 .

[26]  A. Grimaud,et al.  Oxygen Evolution Activity and Stability of Ba6Mn5O16, Sr4Mn2CoO9, and Sr6Co5O15: The Influence of Transition Metal Coordination , 2013 .

[27]  Charles C. L. McCrory,et al.  Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. , 2013, Journal of the American Chemical Society.

[28]  Michael P. Brandon,et al.  Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. , 2013, Physical chemistry chemical physics : PCCP.

[29]  Jean-Marc Routoure,et al.  Experimental evidence of correlation between 1/f noise level and metal-to-insulator transition temperature in epitaxial La0.7Sr0.3MnO3 thin films , 2013 .

[30]  T. Venkatesan,et al.  Oxygen electrocatalysis on (001)-oriented manganese perovskite films: Mn valency and charge transfer at the nanoscale , 2013 .

[31]  M. Arenz,et al.  Comparative DEMS study on the electrochemical oxidation of carbon blacks , 2012 .

[32]  D. R. Strachan,et al.  Preparation of atomically flat SrTiO3 surfaces using a deionized-water leaching and thermal annealing procedure , 2012, 1210.1860.

[33]  J. Nørskov,et al.  Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. , 2012, Physical chemistry chemical physics : PCCP.

[34]  H. Stein,et al.  In Situ Electrochemical Electron Microscopy Study of Oxygen Evolution Activity of Doped Manganite Perovskites , 2012 .

[35]  E. Tsymbal,et al.  Electric modulation of magnetization at the BaTiO3/La0.67Sr0.33MnO3 interfaces , 2012 .

[36]  Y. Shao-horn,et al.  Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. , 2012, The journal of physical chemistry letters.

[37]  Philipp Kurz,et al.  Water oxidation catalysed by manganese compounds: from complexes to 'biomimetic rocks'. , 2012, Dalton transactions.

[38]  D. Nečas,et al.  Gwyddion: an open-source software for SPM data analysis , 2012 .

[39]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[40]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[41]  H. Gasteiger,et al.  Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode , 2010 .

[42]  E. Altman,et al.  Achieving A‐Site Termination on La0.18Sr0.82Al0.59Ta0.41O3 Substrates , 2010, Advanced materials.

[43]  Christian Limberg,et al.  The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis , 2010 .

[44]  S. Fletcher Tafel slopes from first principles , 2009 .

[45]  B. Raveau The crucial role of mixed valence in the magnetoresistance properties of manganites and cobaltites , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  N. Brookes,et al.  Strain induced x-ray absorption linear dichroism in La0.7Sr0.3MnO3 thin films , 2006 .

[47]  K. Cherif,et al.  The effect of a cation radii on structural, magnetic and electrical properties of doped manganites La0.6-xPrxSr0.4MnO3 , 2004 .

[48]  E. Dhahri,et al.  Effect of the oxygen deficiency on the structural, magnetic and electrical properties in perovskite-like La0.6Sr0.4MnO3-δ , 2001 .

[49]  Hubert A. Gasteiger,et al.  Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study , 2001 .

[50]  Steven C. Petrovic,et al.  Cyclic Voltammetry of Hexachloroiridate(IV): An Alternative to the Electrochemical Study of the Ferricyanide Ion , 2000 .

[51]  P. Woodward,et al.  Crystal chemistry of perovskite-type compounds in the tausonite-loparite series, (Sr1−2xNaxLax)TiO3 , 2000 .

[52]  M. Mori,et al.  Thermal‐Expansion Behaviors and Mechanisms for Ca‐ or Sr‐Doped Lanthanum Manganite Perovskites under Oxidizing Atmospheres , 2000 .

[53]  M. Sirena,et al.  Thickness dependence of the properties of La0.6Sr0.4MnO3 thin films , 2000 .

[54]  Y. Tolmachev,et al.  Rotating ring-disk studies of oxidized nickel hydrous oxide: oxygen evolution and pseudocapacitance ☆ , 1999 .

[55]  Y. Tokura,et al.  Atomically defined epitaxy and physical properties of strained La0.6Sr0.4MnO3 films , 1998 .

[56]  Peter R. Griffiths,et al.  Infrared Spectroelectrochemical Analysis of Adsorbed Hexacyanoferrate Species Formed during Potential Cycling in the Ferrocyanide/Ferricyanide Redox Couple , 1997 .

[57]  Y. Moritomo,et al.  Magnetization-dependent behaviors of interband transitions between the exchange-split bands in doped manganite films , 1997 .

[58]  Hubert A. Gasteiger,et al.  Oxygen reduction of platinum low-index single-crystal surfaces in alkaline solution: Rotating ring disk{sub Pt(hkl)} studies , 1996 .

[59]  Popovic,et al.  Electronic structure of the perovskite oxides: La1-xCaxMnO3. , 1996, Physical review letters.

[60]  O. Petrii,et al.  Real surface area measurements in electrochemistry , 1991 .

[61]  M. E. Wernle,et al.  Calculation of escape depths from inelastic mean free paths , 1990 .

[62]  E. Sato,et al.  Electrocatalytic properties of transition metal oxides for oxygen evolution reaction , 1986 .

[63]  Z. Šimša,et al.  Neutron diffraction study of Pr1 − xCaxMnO3 perovskites , 1985 .

[64]  J. Bockris,et al.  The Electrocatalysis of Oxygen Evolution on Perovskites , 1984 .

[65]  J. Bockris,et al.  Mechanism of oxygen evolution on perovskites , 1983 .

[66]  M. R. D. V. Mark,et al.  Electrode cleaning and anion effects on ks for K3Fe(CN)6 couple , 1982 .

[67]  N. Yao,et al.  The effect of surface roughness on the hydrogen evolution reaction kinetics with mild steel and nickel cathodes , 1982 .

[68]  C. Wagner Energy Calibration of Electron Spectrometers , 1980 .

[69]  M. Morita,et al.  The anodic characteristics of massive manganese oxide electrode , 1979 .

[70]  E. Sato,et al.  Oxygen evolution on La1-xSrxMnO3 electrodes in alkaline solutions , 1979 .

[71]  S. Trasatti,et al.  Ruthenium dioxide-based film electrodes , 1978 .

[72]  A. Arvia,et al.  The diffusion of ferrocyanide and ferricyanide ions in aqueous solutions of potassium hydroxide , 1967 .

[73]  R. S. Nicholson,et al.  Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. , 1964 .

[74]  F. A. Kröger,et al.  Relations between the concentrations of imperfections in solids , 1958 .

[75]  J. Bockris Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen , 1956 .