Averaging method for the solution of non-linear differential equations with periodic non-harmonic solutions

Abstract While Krylov and Bogolyubov used harmonic functions in their averaging method for the approximate solution of weakly non-linear differential equations with oscillatory solution, we apply a similar averaging technique using Jacobi elliptic functions. These functions are also periodic and are exact solutions of strongly non-linear differential equations. The method is used to solve non-linear differential equations with linear and non-linear small dissipative terms and/or with time dependent parameters. It is also shown that quite general dissipative terms can be transformed into time-dependent parameters. As a special example, the Langevin (collisional) equation of motion of electrons in a neutralizing ion background under the influence of a time and space-dependent electric field is presented. The method may also be used for non-linear control theory, dynamic and parametric stabilization of non-linear oscillations in plasma physics, etc.